
爱德华・斯诺登曝光NSA监听之后,乔治・奥威尔著作《1984》的销量都增加了。就目前的情况来说,即使人们不喜欢老大哥在监视自己,也要准备好接受隐私被冒犯的代价,来换得安全保障。
那么“大数据”会怎么样?快速增长的个人数据掌握在公司们手中,它们使用新型的数据分析和人工智能技术来改进自己的产品和服务,预测顾客的需求。谷歌首席执行官拉里・佩奇(Larry Page)描述他心目中理想的科技形态是“一个真正智能的助理,能够帮人类去做事,我们就不必再费脑筋”。
试想一下居住在虚拟的唐顿庄园(Downton Abbey)里,有一台电脑帮你安排一天的计划,给出旅行的最佳路线建议、可能想要观看的影片和最适宜搭乘的航班——甚至帮你订票——这的确有诱惑力。我们都在赶时间,想要一个简单轻松的生活。只要不被信息轰炸或是迫失选择,有个私人助理服务还是不错的。
但是NSA监听事件让所有人大吃一惊,虽然监听计划已经存在60年了,我怀疑许多人是否能明白他们每天制造的数据量有多大,或者是否了解如今科技发展到怎样的程度——一小撮大数据公司已经在进行数据挖掘。科技发展得太快,两年前还认为是不可能的事情如今已经十分平常了。
“未来既令人激动又让人恐惧。拥有海量数据的公司们甚至要比你还要了解你自己。它们能预测你下面可能做什么,”李开复说。他是Google中国的前任CEO,目前在北京做投资。
上周我在一篇专栏文章里将谷歌与19世纪的通用电气进行了比较——这是一家创新的工业公司,借助了在新技术潮流发展的力量。不利的一面是谷歌、亚马逊、微软以及其他科技巨头正在积累自己的力量,需要小心翼翼地控制。
NSA和大数据公司将它们的数据库和计算能力用在了不同的地方——一个是发现间谍和恐怖分子,一个是为用户匹配服务。它们对大规模数据库的使用有相似之处,比如模式识别和网络分析等等。
更进一步来看,这涉及到人工智能技术,比如在用户输入关键词时分析搜索的目的、实时将演讲翻译成另外一种语言(像微软去年在中国演示的那样)、通过读取上千张图像去学习分辨一只猫的照片。
计算机学习人类趋同行为的能力被称作是“深度学习(deep learning)”,值得注意的是谷歌已经聘请了该领域的几位前沿学者,其中就包括科学家、作家雷・库兹韦尔(Ray Kurzweil)。NSA向美国私人公司开放的技术转让中就有“领先的机器学习技术”。
这种软件可以从信息碎片中预测许多东西,只要碎片足够多就可以,好像NSA从运营商Verizon那里获取电话拨叫元数据并对其分析一样。总统奥巴马向美国公民保证“没人在窃听你的电话”,但是只要拨叫纪录就足够了。
哈佛大学教授拉坦娅・斯威妮(Latanya Sweeney)的一项研究表明,有87%的人在获知年龄、性别和邮政编码的情况下能够被确认身份,只要在公开数据库里交叉确认(cross-checked)就可以。这恰恰是社交网络和互联网公司通常所收集的数据。
大数据公司的惊人能力来自一点,它们可以将顾客的个人数据进行整合,其中就涵盖购买的何种商品、位置在哪里(由移动电话的GPS搜集)。由此生成一组有关顾客意图的“推测数据(inferred data)”。
举例说明,如果我在印度时用安卓手机搜索“泰姬陵”,谷歌会优先显示北方邦(Uttar Pradesh)的神庙结果。如果我在伦敦东部的布里克街(Brick Lane),则会返回本地的孟加拉风味餐厅结果。基于我的评价纪录提供餐馆预订服务也就不难实现了。
从一方面来说,如果确实做到这一点(只要是一家好餐厅)我会很高兴,因为能够节省我的一些操作。从另一方面来看,正如世界经济论坛关于个人数据的报告里所讲:“预测数据给人感觉好像无所不知的老大哥在盯着监控录像一样。”
其中引发的担忧之一是掌握这种软件能力的大数据公司很难与之抗衡。我和其他用户提供的数据越多,它们对我们意图的预测就越准确。机器大脑越用越精明。
另外一个和信任有关。社交网络在保护用户数据方面做得很差,它们只拥有一小片段涉及用户行为、习惯和意愿的信息。很明显为什么NSA会把社交网络作为目标——NSA有计算能力,他们需要数据原料。
第三点是所有权的问题。我们都对自己的信息享有一定的权利。但是这些信息和其他人的信息被整合到一个大规模的意愿数据库中,情况会有什么变化?如果我改变主意,如何让信息恢复原状?
最重要的一点,我们不知道这种技术意味着什么,因为我们还处于大数据时代的初级阶段。诚然大数据有许多地方令人倾佩,但是需要一些时间让人们爱上它。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28