
大数据如何改变商业_未来五年路线图_数据分析师
如果说2012年是大数据概念为人所知、引人瞩目、小试牛刀的一年,那么2013年大数据将会实现产品部署,早期投资获得回报,一小部分的产业被颠覆。到了2014年,各种大数据项目和系统很可能成为标准配置,到处可见。原文来自 ZDNet,由虎嗅编译。
今年,大数据和云计算一起作为科技术语出现。大数据意味着非常多的事情,但是被援引的次数太多了,几乎失去了其本来的定义。大数据的定义通常和速率(数据移动得快),体积(数据规模庞大),和种类(非结构化和结构化的信息)三点有关。
大数据真的如人们所描述的那样吗?是的。对我来说,大数据代表了科技和商业的一致——也就是首席信息官们始终追求的圣杯(Holy Grail)——成为了一件顺理成章的事情。大数据项目从本质上来说和营收、风险利润是相关的。换句话说,信息科技和商业世界情不自禁地联合了起来。
显然我们正处在一个追捧大数据的阶段,我认为可以和1990年代末的Linux和2000年代初的开源软件运动相提并论。那时候Linux正要开始改变世界,和微软等厂商一较高下。从许多方面来说,Linux和开源软件(比如安卓)的确改变了一切。但是在行业变革的过程中发生了一个有趣的事情——开放软件成了每一个数据中心的标准配置,如今已经被认为是理所应当了。这场变革发生了,我们仅仅是不再谈论它而已。云计算也是一样。
大数据会遵循同样的发展路线。当然,会创造数百万个工作机会,相关人才也会变得有一点抢手。公司们也会用大数据升级各自的行业。随着Cloudera这样的创业公司成为新的红帽子(Red Hats),各家厂商的市场座次也逐渐明朗。
如下是我对大数据未来几年的展望。
2013年:2012年的试验项目成品化,每一个行业的垂直领域都会有一个成功的大数据案例。
2014年:在2013年成功经验和客户研究案例的基础上,一些行动快速的市场跟随者将进入大数据领域。各个行业都将遵循大数据的游戏规则。初期的回报看上去会很不错。公司的主要关注点在内部数据上,因为有很多东西可以挖掘。外部数据也很有用,但是这段时期不会有什么新进展。
2015年:在制定大数据计划时,公司们开始将目光投向外部数据。在2015年之前,消费者所面对的公司都在花费大部分时间用于研究外部信息。每一个分析师和数据仓库都将会有一个Hadoop计算簇和一个大数据层。像Hadoop这样的技术不再受人关注,因为这些技术始终非常重要,慢慢淡化进入软件栈。围绕大数据题材的整合并购开始加速。
2016年:数据驱动的决策代替了直觉和常识。这个时候公司们要开始仔细思考数据的使用,避免出现无意义的数据。公司会因为错误解读了数据而导致重大事故的发生。
2017年:云和大数据、数据仓库合并起来,成为了一项服务,“分析即服务”和“数据即服务”成为主流。很少有公司真正考虑创建自己的Hadoop计算簇进行整合工作。大数据基础设施即将实现。注意:2017年是这些大数据即服务为大众所普及的一个估算时间。大数据即服务的市场竞争在这个时间段正在进行,将会于不久涉及到关键的大范围用户群。
大数据在IT采购周期上又是怎样的情况呢?大数据项目需要有更多高级别的管理人员。分析如下:
首席信息官:大数据项目终于能让首席信息官解决一直以来的“我们一致吗?”问题。
首席财务官:将大数据分析作为控制成本、最大化利润的方式。潜在风险是公司有可能因为忽略人的因素而失去好的机会。
首席市场官:2012年,首席市场官成了IT采购的红人。不过这有点不太合理,因为首席市场官主要依赖外部数据和信号判断项目。
首席运营官,采购人员:大数据可以让存货、供应和制造过程自始至终都可以进行追踪。效率能够得到改进。
数据科学家:这部分员工越来越被看作是“首席”管理层的接班人。职场方面,数据高手想去哪家公司都行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10