京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何设计出一个比较成功量化策略
设计量化交易策略其实就是一个想法+验证的过程。
一、想法的来源:
大概有以下几个思路:
1、金融理论。
金融理论里资产定价的核心就是无套利原则。这里说的套利既包括通常意义的统计套利,也包括更宽泛的概念比如相同的预期收益率下,卖出风险较大的组合,买入风险较小的组合,也是一种套利。因此,多因子模型就是一种套利模型,承担相同风险下,寻找收益率最高的因子组合,从而得到对冲后的alpha。由于这部分是比较学院派的做法,因此推荐大家看下知名的教科书,比如博迪的《投资学》。
2、符合逻辑的直觉
比如从内部人获取信息的角度,大股东以及管理层增持意味着对本公司发展有信心,因此预期公司业绩向好。比如破增发价且距解禁日在一段时间内,那么上市公司可能有维持股价的动力。再比如通过分析与个股相关的新闻,从而能够判断市场对该股的情绪、态度等。这种类型的策略的关键是想法要符合逻辑,符合直觉。
3、一些经典的方法
比如海龟策略,dual thrust,羊驼选股、二八轮动等等。可以借鉴一下这些经典策略的思路,不过要注意一下这些策略在今天还是否有效。
二、验证过程:
1、 目测观察
这个方法主要适用上述的第二种方法。比如大股东增持,我们可以先在交易软件中,寻找到大股东增持的个股及发生的时间点,然后观察一下之后的走势,是不是和我们的逻辑一样。
2、 回测
这部分主要是用历史数据对上述想法进行验证,也包括调参数等。
3、 测试稳定性
在回测中,我们通常会反复调整参数,让策略达到理想的表现,但这样往往会导致过拟合。一中排除方法是将参数稍微做些变动,观察策略的表现。比如原策略是每月1日调仓,我们可以改为每月3日调仓,然后观察一下结果,如果策略差距较大,那么原策略就很可能是过拟合。
另外持仓数量也值得注意。与基本面分析需要深入个股层面不同,量化策略并不对个股基本面进行深度研究,而是通过分散化降低个股层面的异质风险。因此如果一个策略平均持仓很少(10只一下)那么策略的表现可能只是某一只个股表现好,这是可能采取一些验证方法,比如原来选股是选排名前10,那么可以换成排名10-20,如果差距较大,那么说明策略可能只是运气好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27