
商业分析如何帮助企业重塑核心竞争力
在大数据来袭的今天,在企业重塑核心竞争力的征途中,企业经营数据和商业分析,好比“车之两轮,鸟之两翼”,二者缺一不可。在如下的阐述中,我先从商业分析(BA)角度谈谈是如何具体帮助企业重塑核心竞争力的。
首先,商业分析(BA)是一个具有系统化企业管理思想、符合企业决策思维的系统。商业分析(BA)不是把企业管理思想随意堆积在一个商业软件中,它蕴含的企业管理思想是成体系的,它是有管理灵魂的。我拿供应链分析举例来说,供应链分析中其中有三个关键指标:交货及时率、存货周转率与库存呆滞积压率,但交货及时率与存货周转率、库存呆滞积压率是相互矛盾的,要提高交货及时率,很多企业就会首先想到增大库存量,但增大库存量就影响了存货周转率和库存呆滞积压率。所以,商业分析(BA)需要融入系统化的管理思想,掌握这三个指标的平衡;在帮助企业提高交货及时率的同时,尽可能的提高存货周转率和降低库存呆滞积压率。近而,实现供应链的均衡,提升企业的管理水平及效益!企业管理中产生某一个现象,背后可能有若干种原因,不同的管理者分析原因时,可能从不同的角度入手;这就需要商业分析(BA)符合企业管理者分析问题的决策思维方式。比如说,在销售业绩分析中,华北区今年的销售业绩不错,如果接着往下想查看一下在华北区,哪些产品卖得好?哪些业务员业绩高?哪些客户贡献大?这些客户的过去贡献情况如何?针对诸如此类的分析,不同的管理者可能分析的路径不一样,有的想先查看产品再查看业务员的业绩,有的想先查看客户再查看业务员的业绩等等,这些都需要商业分析(BA)有很好的支持。通过诸如此类的分析,企业管理者甚至还可以分析到,虽然华北区整体销售业绩不错,但是华北区的某一个大客户的销售贡献一般。从中真正的做到透视经营,洞察管理,辅助决策!
其次,商业分析(BA)具有先进的技术保障。从技术层面上来讲,商业分析(BA)处理的是企业多年积累的大量数据,甚至包括很多企业外部数据,这就在技术上要求商业分析(BA)具有强大的数据分析引擎,提升数据处理速度的能力。因为,商业分析(BA)不仅仅让企业洞察过去,而且能够预测未来,这就要求其具有统计分析、数据挖掘等相关的技术支撑。我拿用友商业分析举例,来说明商业分析(BA)系统是如何在技术上做到这两点的。用友商业分析,是基于用友集团UAP(Unified Application Platform)的AE与BQ两个平台之上的商业分析应用系统。其中,AE(Acceleration Engine)是支持企业计算关键技术的大数据处理平台,它包括处理引擎、开发工具、管理工具及数据服务功能,其中处理引擎是AE的核心部分。BQ(Business
Quotient)是UAP产品功能集的一部分,是一个企业级、全功能的最佳分析决策平台,它分为5层技术架构,其中数据处理层基于数据处理平台AE,在分析模型层又基于数据挖掘预置了丰富的分析、预测模型。用友商业分析系统为什么技术那么先进,从如上两个方面来看,我们就不难理解了。
再次,商业分析(BA)源于丰富的企业实践的提炼,并满足灵活的企业决策分析。管理重在实践,商业分析(BA)是为企业管理服务的,同样要经过大量企业实践的验证。“管理既是科学,又是艺术”,艺术具有灵活性,不同企业的业务处理千差万别,不同企业的管理要求也不尽相同,这要求商业分析(BA)在大量实践的基础上具有灵活性。我仍拿企业的交货及时率举例,不同的企业确认及时交货的时点不同,有的根据发货时间确认,有的依据客户签收时间确认,这就要求商业分析(BA)支持不同的发货及时率的计算规则。同时,有些企业在交货及时率上允许有时间容差,比如说:在计算到货及时率时,甲企业在要求到货时间的前后两天内到货,都算及时到货;乙企业在要求到货的前后一天内到货,才算及时到货;这就要求商业分析(BA)在功能上具有灵活的设置,以便满足企业这些灵活的分析需求。
最后,商业分析(BA)不但能够帮助企业分析现在,而且能够预测未来。企业的决策大多是面对未来的决策,这对决策支持系统有预测未来的天然要求,商业分析(BA)很好的满足了此类需求。我拿销售领域的“客户流失预测模型”来举例,为了做这个预测我们首先要思考三个问题,客户多长时间购买一次?客户每次买多少,波动性如何?客户多长时间没购买了?想要得到这三个问题的答案,商业分析(BA)系统中一般在“客户流失预测模型”中预置“客户购买周期分析、客户保持率、客户未动期”这三个关键的功能指标。然后,用户在根据特定的需求在“客户流失预测模型”中增加一些指标。通过“客户流失预测模型”的预测结果,企业适当调整营销策略,以便减少客户的流失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25