京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python学习小技巧之列表项的排序
本文介绍的是关于Python列表项排序的相关内容,分享出来供大家参考学习,下面来看看详细的介绍:

典型代码1:
data_list = [6, 9, 1, 3, 0, 10, 100, -100]
data_list.sort()
print(data_list)
输出1:
[-100, 0, 1, 3, 6, 9, 10, 100]
典型代码2:
data_list = [6, 9, 1, 3, 0, 10, 100, -100]
data_list_copy = sorted(data_list)
print(data_list)
print(data_list_copy)
输出2:
[6, 9, 1, 3, 0, 10, 100, -100]
[-100, 0, 1, 3, 6, 9, 10, 100]
应用场景
需要对列表中的项进行排序时使用。其中典型代码1是使用的列表自身的一个排序方法sort,这个方法自动按照升序排序,并且是原地排序,被排序的列表本身会被修改;典型代码2是调用的内置函数sort,会产生一个新的经过排序后的列表对象,原列表不受影响。这两种方式接受的参数几乎是一样的,他们都接受一个key参数,这个参数用来指定用对象的哪一部分为排序的依据:
data_list = [(0, 100), (77, 34), (55, 97)]
data_list.sort(key=lambda x: x[1]) # 我们想要基于列表项的第二个数进行排序
print(data_list)
>>> [(77, 34), (55, 97), (0, 100)]
另外一个经常使用的参数是reverse,用来指定是否按照倒序排序,默认为False:
data_list = [(0, 100), (77, 34), (55, 97)]
data_list.sort(key=lambda x: x[1], reverse=True) # 我们想要基于列表项的第二个数进行排序,并倒序
print(data_list)
>>> [(0, 100), (55, 97), (77, 34)]
带来的好处
1. 内置的排序方法,执行效率高,表达能力强,使代码更加紧凑,已读
2. 灵活的参数,用于指定排序的基准,比在类似于Java的语言中需要写一个comparator要方便很多
其它说明
1. sorted内置函数比列表的sort方法要适用范围更广泛,它可以对除列表之外的可迭代数据结构进行排序;
2. list内置的sort方法,属于原地排序,理论上能够节省内存的消耗;
总结
好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27