
大数据有何与众不同
与众不同的大数据是什么概念
传统的数据处理方式是基于抽样统计的样本数据并致力于回答“为什么”,而大数据的处理方式是基于“总体”的巨量数据基础致力于回答“是什么”。因此可以看出,“大数据”的内涵体现在如下六大方面:一是基于“总体”数据的分析;二是重点分析的是相关关系,而不是因果关系,即回答的“是什么”而不是“为什么”;三是大数据的本质在于对数据和信息进行有效地挖掘和专业化处理,而不仅仅是掌握庞大的数据信息;四是大数据产业实现赢利的关键在于提高对数据的“加工能力”,通过加工实现数据的增值;五是大数据能够有效地实现智能信息匹配,真正实现媒体转型;六是随着基于网页的互联网逐渐被基于数据的语义网所替代,大数据也将伴随这个时代的到来而爆发。此外,由于大数据需要处理大量的非规范数据,这就需要进行大量的数据挖掘和分析,而这就必然和云计算相伴而生。
大数据是基于“总体”的巨量数据,具有如下5个显著特点:一是数据是基于总体的,而不是样本的;二是数据体量巨大,我们已经进入泽字节时代;三是数据的类型及来源繁多,并且包含越来越多的非结构化数据(如图像、声音等信息);四是数据增长快,其对于实时处理速度的要求也很高;五是数据价值高但密度低,海量数据背后拥有价值的数据比例低。
“大数据”分析具有显著的优势。一是能够实现分析的高度智能化,即一方面实现信息收集和分析的智能化,另一方面实现数据与用户需求的有效匹配;二是及时、迅速。大数据分析改变之前的市场调研和数据分析相对滞后的模式和方式,能够及时、迅速地进行分析;三是成本低。由于可以大量使用技术手段,其成本相应较低。可以看出,大数据分析高度依赖于用户规模和技术,而这些都是传统媒体的短板。当前国内最大的数据分析公司无疑是阿里巴巴以及腾讯等具有高科技技术的互联网公司。
笔者认为,“大数据”分析具有3个关键点:一是数据的可获得度。目前,在国内,大数据发展最大的制约在于政府信息的公开性不够,使得很多数据难以获得,导致难以实现真正的大数据挖掘和分析。二是数据分析的模式是否科学,这将直接影响数据分析的质量。三是基于数据分析的独到、高质量的观点,无论何样的数据分析结果,都需要高质量的数据解释,这就体现了行业专家的价值。
传统媒体的着力点在哪里
从目前情况看,传统媒体进军大数据存在着明显的短板。未来,我们必将进入信息智能化时代,以数据为基础的语义网将成为互联网的主流,那个时候,媒体成功的关键是要实现信息、资讯与用户信息需求的智能匹配,而数据分析的技术平台及其能力无疑将起着至关重要的作用。但是传统媒体却存在着两大制约:一是缺乏技术能力。传统媒体一直以来信奉“内容为王”圭臬,培植了很强的“内容基因”,但却缺乏“技术基因”,技术能力低下;二是传统媒体从业人员多是适合“内容基因”的“概念”思维或“亮点”思维,而缺乏适应“商业基因”的管理思维和适应“技术基因”的技术思维,导致从事大数据分析的能力先天不足,这将从根本上动摇传统媒体生存的根基。
虽然前途多艰,但传统媒体可以从如下4点进行突破,寻找到可行的探索路径:一是通过大数据分析及时抓取传统媒体用户的相关阅读信息,提高用户体验。近日,在美国大火的《纸牌屋》就是Netflix大数据分析的典范。在该剧创作之前,Netflix分析了3000万次用户体验,包括观众何时暂停、后退和快进,分析了400万条用户评价、300万次用户搜索操作以及用户观看视频的时间和使用终端等。通过分析,Netflix发现鬼才导演大卫·芬奇和演技派演员凯文·史派西在用户中受关注程度很高,而且英国的一部政治剧《纸牌屋》很受欢迎。于是,便有了现在这部根据观众口味制作的美版《纸牌屋》,创作者按照美国的政治生态对剧情进行了全新创作。Netflix就是这样通过大量分析用户观看视频时的数据,成功找到了观众偏好的题材和演员组合,然后投其所好创作出这部剧,实现了市场大卖。二是实现数据可视化。当前,用户对可视化的数据更为关注,这就要求传统媒体更好地实现数据可视化。数据可视化市场正快速发展,例如,2003年3名斯坦福大学的校友创办的专注于企业数据可视化服务的公司Tableau即将IPO,目前Tableau拥有1万多名客户,其中包括脸谱、苹果和可口可乐等公司。该公司去年的营收翻了两番之多,达到1.27亿美元,其中70%的收入来源于授权,剩余部分来源于软件运维和服务,净利润为160万美元。三是利用大数据技术开发舆情管理的相关产品。当前,我国正处于舆情多发期,舆情管理的需求量很大,传统媒体因为具有较强的传播能力,因此可以在这块业务发力。人民日报社旗下的人民网就在舆情管理方面做得很好。四是利用大数据技术开发企业决策信息产品。
对传统媒体来说,要想真正实现数字化转型,就必须建立起自己基于大数据技术的智能信息服务平台。但很显然,这将是传统媒体很难跨越的天堑征途!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09