京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据有何与众不同
与众不同的大数据是什么概念
传统的数据处理方式是基于抽样统计的样本数据并致力于回答“为什么”,而大数据的处理方式是基于“总体”的巨量数据基础致力于回答“是什么”。因此可以看出,“大数据”的内涵体现在如下六大方面:一是基于“总体”数据的分析;二是重点分析的是相关关系,而不是因果关系,即回答的“是什么”而不是“为什么”;三是大数据的本质在于对数据和信息进行有效地挖掘和专业化处理,而不仅仅是掌握庞大的数据信息;四是大数据产业实现赢利的关键在于提高对数据的“加工能力”,通过加工实现数据的增值;五是大数据能够有效地实现智能信息匹配,真正实现媒体转型;六是随着基于网页的互联网逐渐被基于数据的语义网所替代,大数据也将伴随这个时代的到来而爆发。此外,由于大数据需要处理大量的非规范数据,这就需要进行大量的数据挖掘和分析,而这就必然和云计算相伴而生。
大数据是基于“总体”的巨量数据,具有如下5个显著特点:一是数据是基于总体的,而不是样本的;二是数据体量巨大,我们已经进入泽字节时代;三是数据的类型及来源繁多,并且包含越来越多的非结构化数据(如图像、声音等信息);四是数据增长快,其对于实时处理速度的要求也很高;五是数据价值高但密度低,海量数据背后拥有价值的数据比例低。
“大数据”分析具有显著的优势。一是能够实现分析的高度智能化,即一方面实现信息收集和分析的智能化,另一方面实现数据与用户需求的有效匹配;二是及时、迅速。大数据分析改变之前的市场调研和数据分析相对滞后的模式和方式,能够及时、迅速地进行分析;三是成本低。由于可以大量使用技术手段,其成本相应较低。可以看出,大数据分析高度依赖于用户规模和技术,而这些都是传统媒体的短板。当前国内最大的数据分析公司无疑是阿里巴巴以及腾讯等具有高科技技术的互联网公司。
笔者认为,“大数据”分析具有3个关键点:一是数据的可获得度。目前,在国内,大数据发展最大的制约在于政府信息的公开性不够,使得很多数据难以获得,导致难以实现真正的大数据挖掘和分析。二是数据分析的模式是否科学,这将直接影响数据分析的质量。三是基于数据分析的独到、高质量的观点,无论何样的数据分析结果,都需要高质量的数据解释,这就体现了行业专家的价值。
传统媒体的着力点在哪里
从目前情况看,传统媒体进军大数据存在着明显的短板。未来,我们必将进入信息智能化时代,以数据为基础的语义网将成为互联网的主流,那个时候,媒体成功的关键是要实现信息、资讯与用户信息需求的智能匹配,而数据分析的技术平台及其能力无疑将起着至关重要的作用。但是传统媒体却存在着两大制约:一是缺乏技术能力。传统媒体一直以来信奉“内容为王”圭臬,培植了很强的“内容基因”,但却缺乏“技术基因”,技术能力低下;二是传统媒体从业人员多是适合“内容基因”的“概念”思维或“亮点”思维,而缺乏适应“商业基因”的管理思维和适应“技术基因”的技术思维,导致从事大数据分析的能力先天不足,这将从根本上动摇传统媒体生存的根基。
虽然前途多艰,但传统媒体可以从如下4点进行突破,寻找到可行的探索路径:一是通过大数据分析及时抓取传统媒体用户的相关阅读信息,提高用户体验。近日,在美国大火的《纸牌屋》就是Netflix大数据分析的典范。在该剧创作之前,Netflix分析了3000万次用户体验,包括观众何时暂停、后退和快进,分析了400万条用户评价、300万次用户搜索操作以及用户观看视频的时间和使用终端等。通过分析,Netflix发现鬼才导演大卫·芬奇和演技派演员凯文·史派西在用户中受关注程度很高,而且英国的一部政治剧《纸牌屋》很受欢迎。于是,便有了现在这部根据观众口味制作的美版《纸牌屋》,创作者按照美国的政治生态对剧情进行了全新创作。Netflix就是这样通过大量分析用户观看视频时的数据,成功找到了观众偏好的题材和演员组合,然后投其所好创作出这部剧,实现了市场大卖。二是实现数据可视化。当前,用户对可视化的数据更为关注,这就要求传统媒体更好地实现数据可视化。数据可视化市场正快速发展,例如,2003年3名斯坦福大学的校友创办的专注于企业数据可视化服务的公司Tableau即将IPO,目前Tableau拥有1万多名客户,其中包括脸谱、苹果和可口可乐等公司。该公司去年的营收翻了两番之多,达到1.27亿美元,其中70%的收入来源于授权,剩余部分来源于软件运维和服务,净利润为160万美元。三是利用大数据技术开发舆情管理的相关产品。当前,我国正处于舆情多发期,舆情管理的需求量很大,传统媒体因为具有较强的传播能力,因此可以在这块业务发力。人民日报社旗下的人民网就在舆情管理方面做得很好。四是利用大数据技术开发企业决策信息产品。
对传统媒体来说,要想真正实现数字化转型,就必须建立起自己基于大数据技术的智能信息服务平台。但很显然,这将是传统媒体很难跨越的天堑征途!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27