京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA与腾讯、苹果、Google等企业成功入选教育部产学合作协同育人项目
2018年4月28日,教育部高等教育司发函〔2018〕18号《教育部高等教育司关于公布有关企业支持的产学合作协同育人项目申报指南(2018年第一批)的函》。
为贯彻落实《国务院办公厅关于深化高等学校创新创业教育改革的实施意见》(国办发〔2015〕36号)和《国务院办公厅关于深化产教融合的若干意见》(国办发〔2017〕95号)精神,深化产教融合、产学合作、协同育人,经企业申报、产学合作协同育人项目专家组审议通过,形成了2018年第一批产学合作协同育人项目申报指南。
本批次申报指南中,共有346家企业支持项目14576项。
本次项目,北京国富如荷网络科技有限公司CDA数据分析师与腾讯、京东、百度、苹果、Google、IBM等企业成功入选,主要在“教学内容和课程体系改革项目”,“师资培训项目”,“实践条件和实践基地建设项目”,“创新创业教育改革项目”四个方面进行产学合作协同育人。详情如下:
l 教学内容和课程体系改革项目
"大数据分析方向的教材编写及课程内容建设,充分结合产业一线实践和案例,引入行业相关企业案例,产学结合推动高校教材和课程的建设改革,突出实践,培养创新型大数据分析人才。
CDA数据分析研究院将为参与课程建设的老师提供必要的实验环境、数据以及实验项目,合作高校老师可以围绕CDA数据分析研究院提供的相关素材,结合本专业的实际情况,将大数据开发融入到培养计划,并在此基础上编写教材。CDA数据分析研究院将会根据参与老师的工作量和贡献程度,为每个项目提供总额3万元的活动经费。 "
l 师资培训项目
"根据高校学科建设的需要,由各合作高校派遣学科带头人、骨干教师,CDA数据分析研究院提供切合社会实际需求的课程,努力为院校培养大数据分析方向的优秀师资,推进教学改革与创新工作,帮助合作院校完善学科建设。带动参训教师积极参与教学培训、课题研究、技术研讨、学习和交流活动。根据条件设立面向优秀师资的专题项目研究中心,组建项目团队,引导优秀师资发挥桥梁作用,达到和企业协同育人的目的。
在培训过程中,为了提高培训效果,结合系统、科学的视频的理论课程和暑期集中的实践课程的方式,让参加培训的老师能够循序渐进地掌握相关的技能,并通过圆桌讨论、项目演练等方式,加强参训教师的思考深度和实践能力。"
l 实践条件和实践基地建设项目
"高校与CDA数据分析研究院联合建设实践条件,以共建实验室的方式,通过高校提供场地,企业投入设备和课程,弥补高校在投入上的不足,提高合作高校的硬件水平, 完善高校的实践条件,培养符合行业需求的大数据分析人才。
本项目面向全国高等学校经济学、经济统计学、会计学、计算机科学与技术、软件工程、数学应用、统计学等经管、金融或计算机相关专业,以提高高校实践条件为目标,投入先进的大数据分析设备及平台,并将企业实际的开发流程和实际项目引入到合作高校,从而提升高校师生的动手能力。 "
l 创新创业教育改革项目
为了响应国务院关于“大众创业,万众创新”的号召,更好培养大学生的创新创业精神,借助CDA数据分析研究院的“双创教育”平台,在合作高校中建设创新创业课程体系及实践训练体系,提高创新创业实训效果和质量,落实创新创业成果孵化,搭建宣传展示平台。同时,将在通过在合作高校中引入创新创业孵化器,探究创新创业教育产学合作模式,积累合作经验,打造典型案例,为更多高校在高新产业人才创新创业体系建设健全工作提供参考,并带动更多企业共建创新创业教育产学合作生态。
此次CDA数据分析师(北京国富如荷网络科技有限公司)与教育部的合作,为高校大数据与数据分析的教育起到了正向推进作用,也符合了“CDA人”组织的理想,是CDA发展中一次意义深远的事件。相信在产、学双方的共同努力,数据分析与大数据人才会层层辈出,走向企业,走向国际。
关于CDA
经管之家“CDA数据分析师”品牌(运营公司:北京国富如荷网络科技有限公司),致力于为社会各界数据分析爱好者提供优质、科学、系统的数据分析教育。
截止2017年底,CDA已与国内多所高校进行了战略合作,搭建大数据实验室与共建专业;已出版13本CDA数据分析师系列丛书,市场发行量数万册;已进行100多期数据分析及大数据系统培训课程,培养学员超过40000多名;已举办七届全国数据分析师认证考试,持证人数千人;已开展了四届中国数据分析师行业峰会(CDA SUMMIT),每届参会人数逾3千人;中国数据分析师俱乐部(CDA CLUB)每月举办各类型沙龙会议等活动共100多期。
2016,CDA研究院加入由工信部指导下的“中国大数据生态产业联盟”理事会成员,分管教育事业。
2017,CDA与工信部赛迪达成战略合作,经管之家“CDA数据分析师”品牌得到了社会各界的普遍认可。“CDA数据分析师”队伍在业界不断壮大,对数据分析人才产业起到了巨大的推动作用。
——CDA数据分析研究院
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27