京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用Python api 函数写股票策略
写策略需要了解的语法包括两方面,一方面是语言本身的语法(包括相关库),另一方面是量化平台提供的api。量化平台提供的api帮助文件里都有了,本文主要介绍写策略经常用到的库(datetime、numpy、pandas)中的一些函数。
1、 利用datetime库做日期、时间操作
利用context.now可以获得当前策略运行的时间,返回的是datetime.datetime格式。datetime.datetime格式可以很方便的进行日期、时间操作。比如timedelta可以很方便的在日期上做日、小时、分钟、秒的运算。例如,需要策略运行时间1天前的时间,可以这样写:context.now+datetime.timedelta(days=-1),返回的便是一天前的时间。
2、 利用pandas做数据变频。
量化平台一般只提供分钟或者日频的数据,如果我们需要周、月的数据怎么办呢?pandas的resample函数可以很好的解决这个问题。举个例子,假如我们需要沪深300每月最后一个交易日的收盘价,我们可以这样写:
d= get_history(100,'1d','close')[‘000300.SH’].resample(‘m’,how=’last’)
3、利用set格式选取交集
有的时候我们利用不同标准会得到不同的股票池,如果想得到不同股票池的共同股票,那么可以使用set格式。Set格式可以很方便的进行交集、并集等集合运算。这里举一个例子,比如我们通过设置一定的财务数据条件会得到一个dataframe,记作df。df的列为股票代码,但可能并不都是我们所需的,比如我们只想得到沪深300的成份股,那么可以这样操作:1、s=get_index_constituents(‘000300.SH’) 得到沪深300的成份股。2、z=set(s) & set(df.columns) 得到交集z。3、得到的z是set格式,需要转换为list格式,可以这样操作 zl=list(z)。4、利用pandas 函数 筛选出我们需要的个股 d=df.loc[:zl] d即位我们所需要的数据。
4、 利用try…except跳过出错部分代码
有时候我们会遇到一些不是很重要的问题,但是由于遇到这类问题会报错,从而影响程序执行,这时我们希望的是忽略这些错误就可以了。下面举一个例子说明try…except 的用法。
比如:我们用p表示一只股票某一时刻的价格,v表示这只股票的成交量,我们想计算p/v,但是有可能该股票没有成交量(停牌,或者涨跌停了)这时直接计算就会出错,程序会跳出。这是我们可以try…except做如下处理:
try:d=p/v
except:d=0
意思就是如果计算p/v发生错误,那么就将d赋值为0
5、 利用pickle模块保存变量
有时候我们需要将当前工作空间的变量保存下来,这时可以使用pickle来解决,举个例子,假如目前工作空间有a,b,c三个变量,我们可以进行如下操作:1、f=open(‘file.pkl’,’wb’) 建立一个文件链接。2、import pickle;pickle.dump([a,b,c],f) 这样就可以保存了。读取时1、f=open(‘file.pkl’,’rb’) 2、import pickle;z=pickle.load([a,b,c],f) 这样将读取的变量都保存到了z变量中,通过z[0],z[1],z[2]可以获取a,b,c变量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11