
浅析大数据隐私问题
为什么要使用大数据?
大数据不同于过去的数据仓库,因为它几乎分析所有类型的数据文件或格式,包括图像、视频以及从社交媒体收集的数据。大数据的另一个特点是它没有像服务器对数据存储的“一对一”的关系,而是依赖虚拟化架构,从大型内容商店和档案中提取内容作为单一全球资源。
在企业管理人员和业务线经理中,使用大数据的最大动机是形成更准确、详细的预测或者推测,从而为企业提供潜在的优势。大数据带来的业务优势很广泛,从新产品开发和改进到最佳定价,再到筛选求职简历和设计有效的营销活动等。事实上,政治运动已经开始利用大数据分析:2012年奥巴马竞选就利用了大数据分析来确定可能投票的选民,然后影响他们,通过他们来筹集竞选资金,并获得选票,这是奥巴马获得最终胜利的关键战略。
大数据隐私问题
FTC最近采取的行动是专门针对数据经纪公司:这种公司收集和分析特定消费者行为数据,然后将分析结果卖给希望提高营销和销售业绩的公司。然而,需要承认的是,使用大数据带来越来越多的隐私问题,这并不仅限于这些传统的数据经纪公司。经济学人信息部(经济学人集团内独立的业务部)公布了使用大数据最多的19个行业领域,包括制造业、IT和技术、金融服务、专业服务、医疗保健、制药和生物技术以及消费品等。毫无疑问,大数据革命已经开始。
根据大数据的特点,以及大数据使用的业务动机,最关键的隐私问题是,简单地说,数据的质量或者准确性;以及企业使用这些数据来作出决定而可能会对个人产生的负面影响。例如,从社交媒体获取的个人信息的准确性?从社交媒体或者其他网络来源的信息可以用于筛选或者排名求职申请,或者提高医疗保险的价格吗?基本的个人资料,例如年龄、婚姻状况、教育或者就业情况通常都是未经验证的。在免费电子邮件服务中同样也没有这些验证,几乎所有用户都会点选接受使用条款和私隐声明,表明同意放弃用于数据汇总的一定程度的隐私权利。
另一个质量问题是,当收集互联网搜索字词或短语时,可能会对它们存在误解。企业利用大数据不佳的例子包括使用互联网搜索词条来评估产品定价,或者潜在目标客户。要知道,在家庭计算机中可能有多个用户,并且有很多原因某人在网上搜索与他们无关的主题。这种类型的数据收集、分析和使用可能产生有问题的分析结果,从而导致错误的决策,而最终造成个人和分析数据的企业两败俱伤的局面。这种缺乏对大数据质量的控制将我们指向另一个隐私保护原则,即收集符合且适合既定目标的个人数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08