
产品和运营,应该怎样利用大数据做转化分析
在过去一年的多次营销文案刷屏事件中,产品和运营人越来越清楚地看到,流量≠转化。而转化率,才是衡量一个产品和一次活动最为核心和关键的数据。因此,转化率是网站最终能否盈利的核心,提升网站转化率,提升销量才是王道。今天,我们就聊聊从产品和运营的角度,如何通过大数据做转化分析?
首先要清楚, 转化率究竟是什么?受哪些数据的直接影响?这些数据的影响因素又是哪些?
转化率指在一个统计周期内,完成转化行为的次数占推广信息总点击次数的比率。简单地以下面这个公式来说明:
以电商平台购物为例,总流量一定的情况下,购买人数越多,转化率越高。
而一个用户一次成功的购买行为依次涉及搜索(曝光)、浏览、加入购物车、结算、支付等多个环节,任何一个环节出现差错,都能让用户立刻放弃这次购买行为。根据有关数据,多数电商的转化率只有0.5%左右,这意味着有99.5%的流量被浪费了。(听着好心痛哦)
那么,怎么才能提升购买人数呢?产品和运营,又能怎样进行操作来提升产品销量呢?
一、基础分析:转化的直接影响者都需要设计
转化分析的基础阶段,主要是转化步骤的分析和转化率趋势的监测。
大家都知道,流量是呈漏斗形状的,把流量变为消费者,大约会经历这么5个步骤。就是这5步,足以滤掉 99.5%的潜在用户 。另外根据统计,在几个较大的B2C网站中,流量数据在增大,但是客户停留在网站上的时间在减少,在被称为眼球经济的时代,每个网民在电子商务网站停留的时间大约 在17分钟 。
在这一分析阶段,网站运营和产品人员都应该了解什么数据呢?
这一阶段,网站平台能直接获取的数据多而杂,运营人员在收集数据后,对数据进行分类整理,一般分为以下几类: 人口属性,社会属性,行为习惯,兴趣偏好 等几个方面。
人口属性,包含年龄,性别,身高,地域,学历,收入和教育
社会属性,包括社会职务,婚姻状况,住房车辆,社交关系等等
行为习惯,包括运动,休闲旅游,酒店住宿,饮食起居等偏好
兴趣偏好,包括购物,游戏,体育,文化等
这一阶段的收集分析为用户画像提供基数。为后期的运营方案,文案策划,渠道规划等提供一定的数据支撑。
二、中阶分析:从不同维度分析转化情况
过去人们认为数据是企业的资源,实质上数据是资产,是可以为销量创造价值的资产。要想更好地提升转化率,需要对不同维度的因素进行考虑,也是对上一阶段数据的细分。例如:访问来源、操作平台、跳出页面、操作系统、浏览器类型等。
本阶段,首先要了解,正在网站上浏览的客户,哪些是明确要来买东西的,哪些只是随便来逛逛的,以及他们从什么入口进入;
其次,没有购买的用户,到底看了多少产品页,多少放进购物车没有付款,多少是一个产品页都没有看的;
第三,多少客户产生了购买行为。
第四,非常重要的是,客户登录网站首页之后,除了有40%的弹出率之外,剩下60%的用户分别从哪些渠道进入到产品页面,这些渠道进入之后付款的比例分别是多少。
最后,多少人将产品加入购物车,是否有召回的可能?
通过对网站平台庞大的数据库进行细分整理,才能发现这背后隐藏的用户行为逻辑,从而实现产品人员从产品角度进行优化,运营人员则负责对活动,专题,商品详情页等进行优化。
例如,之前合作过的一个用户,后台数据显示,很多人都将某一款产品加入购物车,但是都没有付款。为了召回这部分客户,网站即时推送了一条优惠券,最后召回30%的订单。
三、高阶分析:多维度交叉分析,不断优化迭代产品
互联网行业的产品都有一个共识: 小步快跑,快速迭代 。唯有如此,才能打造出受用户喜爱的产品。
通过上两段的数据收集和分析,网站的工作人员对网站的优势以及存在的问题,心中已经有概念了。在这一阶段,就需要沉下来,从具体的维度和点进行分析和修正。这一阶段,可以说是数据驱动产品和运营决策。
例如,
广告投放哪个渠道的流量更优质?什么样的品牌内容更容易被消费者传播?
网页内容,如何组织安排更符合访客的个性化需求;
老客户如何才能回访网站,反复购买产品;
如何减少支付失败的订单?
四、分析转化的进阶之旅:思维与工具
提升转化率,既需要有数据驱动的意识,也需要熟练掌握一定的数据分析工具。正所谓,工欲善其事必先利其器。
企业可以知道用户从哪个落地页进入产品,又是在哪一个转化过程中流失掉,切分维度和用户人群,定位流失原因,为运营决策提供数据支撑,提高产品的转化率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27