
产品和运营,应该怎样利用大数据做转化分析
在过去一年的多次营销文案刷屏事件中,产品和运营人越来越清楚地看到,流量≠转化。而转化率,才是衡量一个产品和一次活动最为核心和关键的数据。因此,转化率是网站最终能否盈利的核心,提升网站转化率,提升销量才是王道。今天,我们就聊聊从产品和运营的角度,如何通过大数据做转化分析?
首先要清楚, 转化率究竟是什么?受哪些数据的直接影响?这些数据的影响因素又是哪些?
转化率指在一个统计周期内,完成转化行为的次数占推广信息总点击次数的比率。简单地以下面这个公式来说明:
以电商平台购物为例,总流量一定的情况下,购买人数越多,转化率越高。
而一个用户一次成功的购买行为依次涉及搜索(曝光)、浏览、加入购物车、结算、支付等多个环节,任何一个环节出现差错,都能让用户立刻放弃这次购买行为。根据有关数据,多数电商的转化率只有0.5%左右,这意味着有99.5%的流量被浪费了。(听着好心痛哦)
那么,怎么才能提升购买人数呢?产品和运营,又能怎样进行操作来提升产品销量呢?
一、基础分析:转化的直接影响者都需要设计
转化分析的基础阶段,主要是转化步骤的分析和转化率趋势的监测。
大家都知道,流量是呈漏斗形状的,把流量变为消费者,大约会经历这么5个步骤。就是这5步,足以滤掉 99.5%的潜在用户 。另外根据统计,在几个较大的B2C网站中,流量数据在增大,但是客户停留在网站上的时间在减少,在被称为眼球经济的时代,每个网民在电子商务网站停留的时间大约 在17分钟 。
在这一分析阶段,网站运营和产品人员都应该了解什么数据呢?
这一阶段,网站平台能直接获取的数据多而杂,运营人员在收集数据后,对数据进行分类整理,一般分为以下几类: 人口属性,社会属性,行为习惯,兴趣偏好 等几个方面。
人口属性,包含年龄,性别,身高,地域,学历,收入和教育
社会属性,包括社会职务,婚姻状况,住房车辆,社交关系等等
行为习惯,包括运动,休闲旅游,酒店住宿,饮食起居等偏好
兴趣偏好,包括购物,游戏,体育,文化等
这一阶段的收集分析为用户画像提供基数。为后期的运营方案,文案策划,渠道规划等提供一定的数据支撑。
二、中阶分析:从不同维度分析转化情况
过去人们认为数据是企业的资源,实质上数据是资产,是可以为销量创造价值的资产。要想更好地提升转化率,需要对不同维度的因素进行考虑,也是对上一阶段数据的细分。例如:访问来源、操作平台、跳出页面、操作系统、浏览器类型等。
本阶段,首先要了解,正在网站上浏览的客户,哪些是明确要来买东西的,哪些只是随便来逛逛的,以及他们从什么入口进入;
其次,没有购买的用户,到底看了多少产品页,多少放进购物车没有付款,多少是一个产品页都没有看的;
第三,多少客户产生了购买行为。
第四,非常重要的是,客户登录网站首页之后,除了有40%的弹出率之外,剩下60%的用户分别从哪些渠道进入到产品页面,这些渠道进入之后付款的比例分别是多少。
最后,多少人将产品加入购物车,是否有召回的可能?
通过对网站平台庞大的数据库进行细分整理,才能发现这背后隐藏的用户行为逻辑,从而实现产品人员从产品角度进行优化,运营人员则负责对活动,专题,商品详情页等进行优化。
例如,之前合作过的一个用户,后台数据显示,很多人都将某一款产品加入购物车,但是都没有付款。为了召回这部分客户,网站即时推送了一条优惠券,最后召回30%的订单。
三、高阶分析:多维度交叉分析,不断优化迭代产品
互联网行业的产品都有一个共识: 小步快跑,快速迭代 。唯有如此,才能打造出受用户喜爱的产品。
通过上两段的数据收集和分析,网站的工作人员对网站的优势以及存在的问题,心中已经有概念了。在这一阶段,就需要沉下来,从具体的维度和点进行分析和修正。这一阶段,可以说是数据驱动产品和运营决策。
例如,
广告投放哪个渠道的流量更优质?什么样的品牌内容更容易被消费者传播?
网页内容,如何组织安排更符合访客的个性化需求;
老客户如何才能回访网站,反复购买产品;
如何减少支付失败的订单?
四、分析转化的进阶之旅:思维与工具
提升转化率,既需要有数据驱动的意识,也需要熟练掌握一定的数据分析工具。正所谓,工欲善其事必先利其器。
企业可以知道用户从哪个落地页进入产品,又是在哪一个转化过程中流失掉,切分维度和用户人群,定位流失原因,为运营决策提供数据支撑,提高产品的转化率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10