京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python中利用队列asyncio.Queue进行通讯详解
本文主要给大家介绍了关于python用队列asyncio.Queue通讯的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。

asyncio.Queue与其它队列是一样的,都是先进先出,它是为协程定义的
例子如下:
import asyncio
async def consumer(n, q):
print('consumer {}: starting'.format(n))
while True:
print('consumer {}: waiting for item'.format(n))
item = await q.get()
print('consumer {}: has item {}'.format(n, item))
if item is None:
# None is the signal to stop.
q.task_done()
break
else:
await asyncio.sleep(0.01 * item)
q.task_done()
print('consumer {}: ending'.format(n))
async def producer(q, num_workers):
print('producer: starting')
# Add some numbers to the queue to simulate jobs
for i in range(num_workers * 3):
await q.put(i)
print('producer: added task {} to the queue'.format(i))
# Add None entries in the queue
# to signal the consumers to exit
print('producer: adding stop signals to the queue')
for i in range(num_workers):
await q.put(None)
print('producer: waiting for queue to empty')
await q.join()
print('producer: ending')
async def main(loop, num_consumers):
# Create the queue with a fixed size so the producer
# will block until the consumers pull some items out.
q = asyncio.Queue(maxsize=num_consumers)
# Scheduled the consumer tasks.
consumers = [
loop.create_task(consumer(i, q))
for i in range(num_consumers)
]
# Schedule the producer task.
prod = loop.create_task(producer(q, num_consumers))
# Wait for all of the coroutines to finish.
await asyncio.wait(consumers + [prod])
event_loop = asyncio.get_event_loop()
try:
event_loop.run_until_complete(main(event_loop, 2))
finally:
event_loop.close()
输出如下:
consumer 0: starting
consumer 0: waiting for item
consumer 1: starting
consumer 1: waiting for item
producer: starting
producer: added task 0 to the queue
producer: added task 1 to the queue
consumer 0: has item 0
consumer 1: has item 1
producer: added task 2 to the queue
producer: added task 3 to the queue
consumer 0: waiting for item
consumer 0: has item 2
producer: added task 4 to the queue
consumer 1: waiting for item
consumer 1: has item 3
producer: added task 5 to the queue
producer: adding stop signals to the queue
consumer 0: waiting for item
consumer 0: has item 4
consumer 1: waiting for item
consumer 1: has item 5
producer: waiting for queue to empty
consumer 0: waiting for item
consumer 0: has item None
consumer 0: ending
consumer 1: waiting for item
consumer 1: has item None
consumer 1: ending
producer: ending
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08