京公网安备 11010802034615号
经营许可证编号:京B2-20210330
优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配问题。
适用数据类型:数值型和标称型。
1.信息增益
划分数据集的目的是:将无序的数据变得更加有序。组织杂乱无章数据的一种方法就是使用信息论度量信息。通常采用信息增益,信息增益是指数据划分前后信息熵的减少值。信息越无序信息熵越大,获得信息增益最高的特征就是最好的选择。
熵定义为信息的期望,符号xi的信息定义为:
其中p(xi)为该分类的概率。
熵,即信息的期望值为:
计算信息熵的代码如下:
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0
for key in labelCounts:
shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
return shannonEnt
可以根据信息熵,按照获取最大信息增益的方法划分数据集。
2.划分数据集
划分数据集就是将所有符合要求的元素抽出来。
def splitDataSet(dataSet,axis,value):
retDataset = []
for featVec in dataSet:
if featVec[axis] == value:
newVec = featVec[:axis]
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
return retDataset
3.选择最好的数据集划分方式
信息增益是熵的减少或者是信息无序度的减少。
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
bestInfoGain = 0
bestFeature = -1
baseEntropy = calcShannonEnt(dataSet)
for i in range(numFeatures):
allValue = [example[i] for example in dataSet]#列表推倒,创建新的列表
allValue = set(allValue)#最快得到列表中唯一元素值的方法
newEntropy = 0
for value in allValue:
splitset = splitDataSet(dataSet,i,value)
newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
4.递归创建决策树
结束条件为:程序遍历完所有划分数据集的属性,或每个分支下的所有实例都具有相同的分类。
当数据集已经处理了所有属性,但是类标签还不唯一时,采用多数表决的方式决定叶子节点的类型。
def majorityCnt(classList):
classCount = {}
for value in classList:
if value not in classCount: classCount[value] = 0
classCount[value] += 1
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return classCount[0][0]
生成决策树:
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
labelsCopy = labels[:]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeature = chooseBestFeatureToSplit(dataSet)
bestLabel = labelsCopy[bestFeature]
myTree = {bestLabel:{}}
featureValues = [example[bestFeature] for example in dataSet]
featureValues = set(featureValues)
del(labelsCopy[bestFeature])
for value in featureValues:
subLabels = labelsCopy[:]
myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
return myTree
5.测试算法——使用决策树分类
同样采用递归的方式得到分类结果。
def classify(inputTree,featLabels,testVec):
currentFeat = list(inputTree.keys())[0]
secondTree = inputTree[currentFeat]
try:
featureIndex = featLabels.index(currentFeat)
except ValueError as err:
print('yes')
try:
for value in secondTree.keys():
if value == testVec[featureIndex]:
if type(secondTree[value]).__name__ == 'dict':
classLabel = classify(secondTree[value],featLabels,testVec)
else:
classLabel = secondTree[value]
return classLabel
except AttributeError:
print(secondTree)
6.完整代码如下
import numpy as np
import math
import operator
def createDataSet():
dataSet = [[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no'],]
label = ['no surfacing','flippers']
return dataSet,label
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0
for key in labelCounts:
shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
return shannonEnt
def splitDataSet(dataSet,axis,value):
retDataset = []
for featVec in dataSet:
if featVec[axis] == value:
newVec = featVec[:axis]
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
return retDataset
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
bestInfoGain = 0
bestFeature = -1
baseEntropy = calcShannonEnt(dataSet)
for i in range(numFeatures):
allValue = [example[i] for example in dataSet]
allValue = set(allValue)
newEntropy = 0
for value in allValue:
splitset = splitDataSet(dataSet,i,value)
newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
def majorityCnt(classList):
classCount = {}
for value in classList:
if value not in classCount: classCount[value] = 0
classCount[value] += 1
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return classCount[0][0]
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
labelsCopy = labels[:]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeature = chooseBestFeatureToSplit(dataSet)
bestLabel = labelsCopy[bestFeature]
myTree = {bestLabel:{}}
featureValues = [example[bestFeature] for example in dataSet]
featureValues = set(featureValues)
del(labelsCopy[bestFeature])
for value in featureValues:
subLabels = labelsCopy[:]
myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
return myTree
def classify(inputTree,featLabels,testVec):
currentFeat = list(inputTree.keys())[0]
secondTree = inputTree[currentFeat]
try:
featureIndex = featLabels.index(currentFeat)
except ValueError as err:
print('yes')
try:
for value in secondTree.keys():
if value == testVec[featureIndex]:
if type(secondTree[value]).__name__ == 'dict':
classLabel = classify(secondTree[value],featLabels,testVec)
else:
classLabel = secondTree[value]
return classLabel
except AttributeError:
print(secondTree)
if __name__ == "__main__":
dataset,label = createDataSet()
myTree = createTree(dataset,label)
a = [1,1]
print(classify(myTree,label,a))
7.编程技巧
extend与append的区别
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
extend([]),是将列表中的每个元素依次加入新列表中
append()是将括号中的内容当做一项加入到新列表中
列表推到
创建新列表的方式
allValue = [example[i] for example in dataSet]
提取列表中唯一的元素
allValue = set(allValue)
列表/元组排序,sorted()函数
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
列表的复制
labelsCopy = labels[:]
以上就是本文的全部内容,希望对大家的学习有所帮助.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27