
大数据应用企业如何避免失败
面对新事物很多人在第一时间很难接受,而“大数据”也被当成了攻击对象。而不可否认的是,大数据给IT带来了不小的动力,而如何有效利用数据推动商业成功,也已成为国家战略的一环。
很多人对大数据众说纷纭,也发表了自己的看法和理解,这对IT业界的读者而言,都是理所当然的事情。但正是这些众所周知的道理通常也是非常重要不可忽视的。下面将重新提出大数据的“陷阱”,探讨如何才能避免运用大数据的失败。
是否真正需要大量的数据
有人说,只要有一定量的数据,无关数据数量,分析的结果并不会有很大的差别。如果果真如此,不禁让人产生怀疑,即到底大数据是为何而存在。这些观点,使人感到大数据所面临的矛盾。本以为通过大数据分析,满怀期待能够发现以往没有认识到的新的东西,但有时其结果不过是已有所知的事实而已。
数据的“质量”有无问题
由谁来维护大量的数据?即数据的“质量”如何能够得到保障。虽然是顾客数据,但也不仅仅是顾客数据,说到大数据必然还需要处理很多各种各样的企业外部的数据。但是,这些数据是否是最新数据,其数据的精确度又如何等数据的“质量”就会非常重要。分析出处不明的数据将毫无意义。如果顾客数据不能随时进行维护,也就不会产生任何价值。
是否忽视了职工的工作干劲
在关注企业发展的同时,还应当努力培养数据科学家,同时提升现场职员的分析数据的能力。如果在店头等现场直接接触顾客的员工变得“擅长数字”,他们也能够常常通过数据考虑事情并进行判断,这样的企业必定会强大起来。
通过现场增加的销售额,也许和利用大数据获得的销售数字相比很小,而且其分析能力也远远不及数据科学家。但是即便如此,如果通过将这种方式横向拓展到其他现场,积累的数字也会非常可观。同时,最为重要的是,这种方式能够提升现场员工的工作动力。
以上所提到的这几点对大数据很重要,而且还是和用于整个信息系统,IT业界对于大数据的期待已久,想要让大数据成长壮大,就需要踏实努力,不要被华丽的外表所束缚摆弄,希望大家对上面这几点仔细考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10