
不关注人性的大数据,只是大忽悠_数据分析师
斯大林曾说:一个人的死是悲剧,一百万个人的死就是数据。如果拿医学界的术语,这是一种共情疲劳,如果换成时下最流行的术语,就是我们还无法处理大数据。
上周参加腾讯思享会,主题就是“大数据将如何影响社会变革”。场间针对大数据,提出了不同的声音,有“数据孤岛论”:现有的大数据是断裂而封闭的,比如腾讯说自己有某方面的全数据,但是否有百度,有阿里的?有“数据阴谋论”:现在在用大数据做事的就是大企业和政府机构,如果我们普通人不能掌握,那就是被一个无形的网所束缚、所监控。有从经济安全角度来看待大数据处理“黑箱”问题时的作用。也有从实践角度来谈论大数据在商界中的应用。但最触动我的是下面两个观点。这里简单摘编下以飧读者。
不关注人性的大数据是大忽悠---刘德寰
现在主流对大数据的理解是基于维克托的《大数据时代》进行二次改良。但这其中有两个十分值得商榷的观点,一是对抽样的极端蔑视,二是无原则的推崇相关。大数据是一种抛弃随机分析法(抽样调查)而对所有数据进行处理,那么这其中就存在一个由斯坦福Trevor Hastie提出的问题,如何在稻草里找一根针,前提是很多稻草长得和针一样。这是我们所有大数据研究面临的最大风险,数据太大之后带来的实际上是一个规律的丧失和失真,千万不要忽视了抽样。
抛开这两个观点,更为可怕的是现在的大数据鲜有关注人性。先举个生活中大家都遇到过的问题,一个人去网上买了5升的洗衣液,整个流程花费了不到1分钟。第二天浏览网页,他发现旁边的广告就是各种各样的洗衣液。这是什么?基于大数据的精准营销? 这恐怕是基于大忽悠的精准骚扰吧。 有点常识的人都知道,5升的洗衣液就算家里人再多也要用一个月,而且那个人流程这么短,肯定就是品牌忠诚者,推广的应该是什么时候那个品牌的洗衣液会打折之类的,这才是大数据。人类早期研究问题的方法就是靠体会、知觉、体验、内省等,这些看起来跟大数据无关的东西可能恰恰是大数据的核心,因为它是思想。
谷歌2008年弄了一个非常厉害的东西叫流感趋势预测,它预测的结果比美国疾病控制中心还准,当时轰动了全球。结果后来里面东西越来越乱,严重的高估了流感的状态。为什么?这就是刚刚说的维克多流派谈大数据的时候重相关不重因果。流感跟发病的时间点,跟美国比如中学生篮球赛那个时间点是完全一致的,这俩概念能有关系吗?问题是只要搜索中学生的篮球赛,就构成了流感预测的一个主要的词之一。类似的东西太多了,为什么?因为在谷歌预测的时候,没有找疾控公共卫生的专家,这些东西才是进行大数据预测的一个很重要的前提。
基因工程才是真正的大数据
人有多少细胞?量级为10的14次方。 其中一个细胞癌变就能导致你生命的完结。难道这不是大数据?真正的大数据是生命大数据,基因筛查可以消灭先天性疾病和预防癌症,人类想在千年之后复活亦不是难事。可是这样的基因科技发展却遭遇了无数现实瓶颈和伦理挑战。
问题1:从文明和宗教角度,基因工程造就的“完美人”是另一个物种,这样的“完美人”还是人类么?
问题2:基因问题与大数据问题其最大伤害是对人格独立性与隐私性的剧烈破坏。
文章来自:CDA数据分析师官网
针对这两个问题,华大基因研究院汪建院长给出他的解读:
你不做,欧洲人在做,美国人在做,用一种最悲观的说法,与其让白人把我们搞死不如我们自己把自己搞死。1993年我在西雅图的时候,老布什时代启动人类基因组计划,那个时候讨论地非常激烈。基因科学会对现行的人类道德、法律、生活生产医疗方式带来天翻地覆的变化,这可能很难以人的意志来改变,在这个时间维度上有点儿太快了,我们自己也感觉太快。当时我在科学院的时候就是因为这些事情争论不休,所以,我们才离开。离开以后,结果更快了,从几十个人几年时间变成几千人,明年可能就上万了,明年纯基础研究机构有上万人,可能对国家现在有关的科研机构的破坏性和挑战性就很大,产业的发展也会很大。但是它在某些程度上又顺应着民众的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10