
大数据如何帮助我们改善大气环境
大数据可以把现有的旧能源网络变成更加智能的网络,能够了解个人的能源消耗状况。这无疑将提高效率,降低能源价格并帮助我们减少碳排放量。
智能能源网格
在不久的将来,将有越来越多的家电设备带有传感器。这些传感器能够在能源公司、家庭智能仪表和电器之间进行双向通信。当所有的家用电器都通过传感器连接到互联网时,我们就可以根据需要,对单个设备的能耗进行监测和调整。越来越多的能源机构正在开发智能电表来记录单个家用电器设备的电能消耗情况。而这些信息将返回到能源公司,使得能源公司可以了解和预测能源需求。我们相信,随着研发工作的进一步深入,实时监控和调整能源需求将只是时间问题。
当越来越多的设备具备了传感器之后,产品之间也将能够相互通信交流,甚至是进行跨不同网络的通信。这将帮助能源企业更好地了解和管理整个网络的能源利用率。对于未来的电动汽车来说,这是相当有用且重要的。当消费者回家后将电动汽车的充电和其他家用电器同时开启时,能源电网可能无法应付这一需求的高峰期。因此,越多的电器设备具备了传感器,就越能够与能源网络进行通信和沟通,能源公司也就能够更好的管理其网络内的能量分布。
但是,真正的智能电网距离我们仍然还十分遥远。据以太网之父鲍勃·梅特卡夫表示,智能电网可以提供“大量廉价和清洁的能源”。他创造了一个由互联网影响的智能电网,称为“Enernet”愿景。
这种智能电网也将同时能够防止能量在网络中的损失并防止停电事故的发生。传感器系统可以同步的实时监测电线的状况,每秒钟都能收集多个数据流。这些信息可以更容易地检测到停电事故。当确实发生停电事故时,其可以使得能源公司的响应速度更快、更好。这种传感器还可以检测能量是如何在网络中传输的,以及在何时何地发生了能量损失。这些信息实时传递反馈给能源公司的控制中心,能够帮助他们实时的需求进行调整。
西北太平洋的巴特尔智能电网示范项目就是这样的一个智能电网试点。该试点项目的六万名参与者来自美国的五个州。该项目旨在确定智能电网是否向我们所认为的那样有价值,是否更具经济效益。一个智能电网需要在在硬件和软件方面进行大量的投资。其也将极大地帮助我们收集数据信息:从之前的记录一个仪表一个月之内的读数变为智能电表每15分钟记录一次读数。也就是每天每百万智能电表共计记录9600万次读数。其结果是数据信息增加了3000倍,如果不加以妥善管理,这些数据信息将是相当繁杂的。
改变消费者的行为
如果消费者可以根据实时数据和能源价格管理他们自己的能源消耗,将可能会改变他们的行为。一款智能电表可以基于需求预测建议消费者在稍后某个时刻能源成本降低时使用某款电器设备。这将帮助能源公司更好地管理能源需求。如果某款电器设备(例如加热器)可以基于价格范围和网络的能量需求自行决定在最佳时间开始工作,这无疑将产生更好的效果。
预测需求和价格
与数以百万计的电器相连接的智能电网能够预测能源消费量。监测设备如何使用能源,并提供有价值的数据信息,并进一步分析预测对于能源的需求状况和可能出现的能源短缺。此信息可用于在合适的时间和地点提供适量的能量。其可以帮助平衡不同时间和地点的能源需求高峰。能源分销机构可以提高顾客满意度,并通过减少停电的次数和持续时间遵守相关的合规性。如果能源公司能够找到发生网络故障与相关停电事故之间的联系,那么这就表明他们能够精确确定和识别发生故障的位置,并实时的提供相关的解决方案。
当智能电网平衡了能源需求的高峰之后,网络将变得更可靠。而目前的网络问题在于,不仅仅是没有这么大的网络容量,而且还需要应对高需求的能力。智能电网可以帮助防止极端高峰所导致的断电。
大数据也将有助于优化能源交易,从而更好地预测价格波动。大数据可以基于1000个不同的数据集针对能源市场做出几乎实时的复杂分析。随着能源价格的波动,能够基于这1000个不同的数据源进行价格预测是相当有价值的。对于能源供应和需求的预测,能够帮助能源销售机构获利。通过对市场的充分了解,他们可以保护自己免受能源价格波动的影响。最后,他们将能够提供更便宜的能源,提高客户满意度。
未来的投资和维护
来自网络的大量传感器的数据信息可以提供关于网络质量的附加信息。它可以帮助能源企业确定未来的投资是否是必要的,或是需要进行维护。不必进行定期的网络检查,大数据工具可以用来实时的监控网络设备,只在必要时采取相关的措施。这将为能源企业节省很多不必要的调查,预防费用。同样,这些信息还将有助于了解哪些投资能够帮助能源企业获得最大的投资回报。
例如,Vattenfall公司在风力涡轮机内安装了传感器数据,以预测何时需要进行维护。这将为该公司节省了很多不必要的检查涡轮机时所需要的直升机费用和其他维护费用,以及昂贵的咨询费用。
大数据也可以被用来改善风力涡轮机的安置位置,以便获得最佳的能量输出。在微观和宏观层面,对不断变化的天气进行预测可以帮助企业选择最佳的风力涡轮机安置地点。或者根据地区年度日照情况数据来选择太阳能系统的安置地点。结合结构化和非结构化数据,如潮汐、地理空间、传感器数据、卫星图像、森林砍伐地图和天气模型也可以帮助确定最佳安置地点。
例如,丹麦能源公司维斯塔斯风力系统利用IBM大数据分析解决方案来分析许多不同的数据集,以确定每台风力涡轮机的最佳安置地点。将风轮机安置在错误的地方会导致无法生产出足够的电力,无法判断风能投资的投资回报率,也就增加了电力成本。
大数据应用在能源领域最重要的影响是,其将使得现有的能源网络变得更高效。这将帮助我们减少能源消耗量,并降低消费者的购买价格。智能能源管理可以防止电网超载运行,并防止新的和昂贵的电厂建设需求。较少的电厂能够提供更高效率的能源和更低的价格,影响我们的碳排量。所以,最终,大数据有可能变成比采用可再生能源更可持续的技术,以帮助我们减少碳排量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28