
神经网络:
首先咱们先来回顾一下之前课程所讲前向传播和反向传播知识点,前往传播就是从输入X到最终得到LOSS值的过程,反向传播是从最终的LOSS值经过梯度的传播最终计算出权重矩阵W中所有参数对于最终的LOSS值影响大小,更新参数就是通过不同权重参数对终LOSS值的影响来调节参数,使得咱们的参数矩阵W能够更拟合咱们的数据,也就是使得最终的LOSS值能够降低。这一系列的过程就是相当于完成了一次迭代
下面咱们就来看看神经网络跟传统的线性分类到底有什么区别,从公式中我们可以看出,一个最明显的区别就是神经网络函数多了一个MAX()计算也就是说我们咱们现在的函数公式变成了一个非线性的操作,也正是这种非线性的函数使得神经网络相比于传统的线性分类更强大,因为非线性可以使得咱们的函数去拟合更复杂的数据。
接下来咱们就来看一下神经网络的结构,从途中可以看出,神经网络是一个层次的结构
输入层也就是代表着数据源
隐层这个大家理解起来可能有些费劲,咱们可以把隐层当成是中间层也就是在这里对输入数据进行了非线性的变换
激活函数它是跟隐层在一起的,比如这个MAX()函数就是一个激活函数,正是因为激活函数的存在才使得整个神经网络呈现出一种非线性的模式。
输出层这个就是最终得到的结果了,比如一个分类任务,最终的输出就是每个类别的概率值了
我们可以看到对应于多层的网络也就是有多个隐层,相当于咱们又加了一层非线性函数MAX(),这个理解起来很简单了吧,对于深层网络来说,它具有更好的非线性也就是说网络的层数越深就更能够去拟合更复杂的数据。
看过很多讲解都提高了把神经网络和人类的脑结构相对比,我觉得这有些增加了游戏难度,因为很多同学本身对生物学结构就不是很清楚,又搞了这多名词出来,理解起来好像更费劲了,这里咱们就不说生物学结构了,直接看右半部分,和之前的线性分类最大的区别就是我们多了一个activation function也就是咱们刚才所说的激活函数,可以说正是激活函数的存在使得整个神经网络变得强大起来。
那么神经网络能表达多复杂的数据信息是由什么决定的呢?这个例子给了咱们很好的解释,神经网络是表达能力是由神经元的个数,也就是每一个隐层所函数神经元的个数来决定的,神经元越多,层数越深表达的能力也就越强,理论上我们认为神经元越多越好!
咱们刚才说了神经网络具有很强的表达能力,但是也很危险的,就是说神经网络很容易发成过拟合现象,因为咱们有大量的神经元也就是导致了我们需要的参数是极其多的,那么该怎么办呢?最直接的方法就是加上正则化项,它可以使得咱们的神经网络不至于过拟合很严重也是咱们训练神经网络必做的一项,图中显示了正则化的作用!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28