京公网安备 11010802034615号
经营许可证编号:京B2-20210330
比较现代的分类算法:决策树和神经网络。这两个算法都来源于人工智能和机器学习学科。
首先和小伙伴介绍下数据挖掘领域比较经典的Knn(nearest neighbor)算法(最近邻算法)
算法基本思想:
Step1:计算出待测样本与学习集中所有点的距离(欧式距离或马氏距离),按距离大小排序,选择出距离最近的K个学习点;
Step2:统计被筛选出来的K个学习点,看他们在分类中的分布,频数最大的分类及为待测点的分类;
该算法主要来源于人工智能,常用语博弈论,基本逻辑如下图(解释女网友见男网友的决策过程)。决策数学习集的属性可以是非连续的,可以是因子,也可 以逻辑是非等。决策过程中需要找到信息增益最大的属性作为根节点,然后逐级找出信息增益次小的属性,作为下一层决策点,逐级按照信息增益排列的所有属性, 即可做出决策树。目前用的最多的ID3和其后续升级版。
现在我们来看看如何用R帮我们做决策树分析,我们借助鸢尾花数据集来做,同时我们需要导入rpart包来做决策树分析:
结果如下图:
ANN(Artificial NeuralNetWorks)
通过学习集构造出一个模型(感知器:如下图),图中0.3即为该分支的权值,0.4为偏置因子(t), sum求和为本例的激活函数(也可是其他函数:三角,指数等),人工神经网络也就是通过学习集来修正权值,通过负反馈过程进行,具体算法如下:
显示的问题往往比较复杂,需要构造多层神经网络如下图:
接下来给小伙伴们分享下R语言如何实现人工神经网络分析,我们需要安装AMORE包,我们就解决上文提到的3个变量分类y 的案例:
输出结果见下图:
其中Z看符号变可区分,对比Z 和Y,发现神经网络得出的结果和目标值100%吻合。
由此,我们可以看出人工神经网络的强大魅力,我们可以不用去弄明白内部具体算法原理,我们只需要确定输入输出和设置相应的节点便可以轻松完成分类。对于隐藏层个数设置我们需要做一定的分析,并非隐藏层数越多,模型越精确,原因有两个:
1、 对于问题规模不那么复杂时,较多的隐藏层会浪费我们过多没有必要的时间;
2、 隐藏层越多确实可以给我们带来更好的拟合效果,但需要注意的是,对学习集的过度拟合会造成预测时的巨大误差。
神经网络的黑箱性是把双刃剑,一方面黑箱给我们带来很大的方便;但另一方面黑箱的隐藏性让我们无法把控,得出的模型无法和业务结合做解释,因此神经网络需要新的思路来重构算法,Hopfield神经网络的出现就解决了早期神经网络的黑箱性和过度拟合等缺点。
本文来自:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27