
常见的几种矩阵分解方式
1.三角分解(LU分解)
矩阵的LU分解是将一个矩阵分解为一个下三角矩阵与上三角矩阵的乘积。本质上,LU分解是高斯消元的一种表达方式。首先,对矩阵A通过初等行变换将其变为一个上三角矩阵。对于学习过线性代数的同学来说,这个过程应该很熟悉,线性代数考试中求行列式求逆一般都是通过这种方式来求解。然后,将原始矩阵A变为上三角矩阵的过程,对应的变换矩阵为一个下三角矩阵。这中间的过程,就是Doolittle algorithm(杜尔里特算法)。
转一个Tony Ma同学写的例子:
若AX=b是一个非奇异系统,那么高斯消元法将A化简为一个上三角矩阵。若主轴上没有0值,则无需交互行,因此只需进行第3类初等行变换(把第 i 行加上第 j 的 k 倍)即可完成此变换。例如
第3类行变换可以通过左乘相应的初等矩阵image实现,对上例来说进行的3个变换就是相应初等矩阵的乘积。注意最右边是一个下三角矩阵L
从而有G3G2G1A=U
,即A=G−11G−12G−13U。因此A=LU
,为一个下三角与一个上三角矩阵的乘积,因此称为LU分解。
注意:
1)U是高斯消元的结果,且对角线上是主元
2)L对角线上是1,对角线下面的元素image恰恰是在式1中用于消去(i,j)位置上元素的乘子。
LU分解常用来求解线性方程组,求逆矩阵或者计算行列式。例如在计算行列式的时候,A=LU
,det(A)=det(L)det(U)
。而对于三角矩阵来说,行列式的值即为对角线上元素的乘积。所以如果对矩阵进行三角分解以后再求行列式,就会变得非常容易。
在线性代数中已经证明,如果方阵A
是非奇异的,即A
的行列式不为0,LU分解总是存在的。
2.QR分解
QR分解是将矩阵分解为一个正交矩阵与上三角矩阵的乘积。用一张图可以形象地表示QR分解:
这其中,Q
为正交矩阵,QTQ=I
,R为上三角矩阵。
实际中,QR分解经常被用来解线性最小二乘问题。
3.Jordan分解
每次看到Jordan分解,就想起当年考研的那段时光。控制原理里面,就有大段关于Jordan分解的内容。可惜当时矩阵分析没有学到位,线性代数里头又没有提到Jordan分解,所以理解起来那个费劲。
废话这么多,先来看看Jordan到底是个什么鬼:
我们将下面的k×k
阶方阵
称为Jordan块。同时,我们也将由若干个Jordan块组成的对角矩阵成为Jordan阵。
由Jordan块的定义不难看出,Jordan 阵与对角阵的差别仅在于它的上 (下)对角线的元素是0或1。因此,它是特殊的上三角阵。
为什么要进行Jordan分解呢?或者说,Jordan分解能解决什么问题呢?
我们先来复习一下,如果一个n阶方阵A
可以对角化,那么A至少满足下列条件的一个:
1.A有n个线性无关的特征向量。
2.A的所有特征值的几何重数等于相应的代数重数,即qi=pi。
3.A
的极小多项式经标准分解后,每一项都是一次项,且重数都是1。
因为有的矩阵不可以进行对角化,那么我们可以对它进行Jordan分解,达到简化计算的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11