
找一份数据分析工作,是不是真的很困难
经常遇到有人留言咨询,表明自己想做数据分析,但是面临着很多“困境”,如:
大学本科数学专业的,想从事数据分析师,但没项目经验怎么办?应该怎么规划?
我一个朋友想做数据分析,她是学物理的,过去有一些工作经验,但是跟数据分析没什么关系,去面试数据分析有压力吗?
我是文科生,没有数据分析经验,也没有数理统计基础,想找一份数据分析的工作难吗?
归根溯源,很多人看好数据分析,想要入职数据分析岗位,但是为什么选择数据分析,你真的想清楚弄明白了吗?是单纯的因为看好这个职业的发展?还是因为看到市场需求,单纯的跟风转行?还是对数据热衷,单纯的喜欢数据,被数字吸引?或者还没想好自己想做什么?……
本文笔者将从三个方面给大家解读以上困惑,希望大家能找准自己的定位,并找到自己心仪的工作。
一、选对行业和适合自己的方法技术工具
首先你需要分析现有招聘职位,通过对招聘职位的分析,发现互联网行业以及生活服务、医疗健康等行业人才需求比较迫切,而你要做的是根据当前市场需求,确定自己喜欢的行业,并为之开始准备。
而技术工具方面365 Data Science 层收集了 LinkedIn 上 1001 数据科学家的信息,发现目前需求量最大的编程语言为 R 语言、Python 和 SQL。另外,还要求具备 MATLAB、Java、Scala 和 C/C++ 方面的知识。为了能够脱颖而出,需要熟练掌握 Weka 和 NumPy 这类工具。
确定好自己感兴趣的行业,自己需要掌握的工具,然后你已经成功开启了自己进入数据分析行业的第一步——明确的目标。
二、没有工作经验可能真的不是问题
前面你已经选好了自己想要从事的行业,复盘了自己真实掌握的技能,现在想找数据分析的工作需要解决的就是工作经验的问题。笔者想说,为了降低跳槽成本和求职难度,建议优先选择之前所在行业。
当然,有经验或许更容易找到适合自己的工作,但是不同的项目经验会让你掌握更多的技能好对不同商业模式的深刻理解。例如参加Kaggle这种大型网站的开发,或者像CDA数据分析师就业班一样跟着老师踏踏实实做几个战线自己能力的项目,多积累你想进入的行业的相关案例。
有时候不得不说,经验是可以用项目来弥补的,重要的是要让自己简历这张薄薄的纸足够丰满。
三、对入职企业有充分认知真的很重要
数据分析,大多数你要接触的是关于数学、编程和技术。但是不能否认的是作为数据分析工作人员,你需要对该公司所在行业有一定的认识——行业发展趋势、客户的痛点、竞争对手等信息。
毕竟手上有粮,心中不慌,为面试做好充足的准备才能保证面试的质量。
事实证明,如果你真的有实力,能力和企业的需求相匹配,找一份数据分析的工作不仅不难,好的工作真的是任君挑选。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11