
R语言_符串处理和grep的用法
R通常被用来进行数值计算比较多,字符串处理相对较少,而且关于字符串的函数也不多,用得多的就是substr、strsplit、paste、regexpr这几个了。实际上R关于字符串处理的功能是非常强大的,因为它甚至可以直接使用Perl的正则表达式,这也是R的一个理念,作为语言就把向量计算做到极致,作为环境,就在各领域都集成最好的。R中有grep系列的函数,可以用最强大的方式处理字符串的所有问题。
grep的全称是global search regular expression and print out the line,是Unix下一种强大的文本搜索工具,可以通过正则表达式搜索文本,并把匹配的行打印出来,包括grep、egrep和fgrep(egrep是扩展的grep,fgrep是快速的搜寻方式并没有真正利用正则表达式)。Linux下使用GNU版的grep,该套规范也被广泛地使用,R中的grep函数就是其中之一。
grep的核心就是正则表达式(Regular Expressions,通常缩写为regex),所谓正则表达式,就是用某种模式去匹配一类字符串的一个公式,很多文本编辑器或者程序语言都支持该方式进行字符串的操作,最开始是由上文介绍的Unix工具grep之类普及的,后来得到广泛应用。尤其是Perl语言中将正则表达式发挥到了极致。
R中的正则表达式非常专业,从grep系列函数的参数就可以看出,有个参数“extended”,默认为T,表示使用扩展grep,也就是egrep,如果选择为F就表示基础的grep,不过该种方式不被R推荐,即使使用了也会出现警告,实际上grep能做的egrep也都能做,而且还要简单不少。我刚开始在egrep中使用总是不能通过,后来发现其实egrep中更简单,很多时候直接写在[]内就行。还有一个参数“perl”,默认为F,如果选择T表示使用Perl的正则表达式规则,功能更加强大,不过如果没有专门学过Perl语言的话用egrep也就够了。另一个参数“fixed”虽然描述的不是同一个东西,但是也很相关,选择之后就会进行精确的匹配,不再使用正则表达式的规则,在效率上会快很多,我觉得这个可能就是fgrep。R的帮助文档中也明确说明了这三个参数实际上代表了四种模式,常规grep、扩展grep、Perl正则表达式、精确匹配,使用者可以根据具体的含义选择自己需要的,如果参数设置互有冲突,会自动忽略后面的参数,并会在Warning中明确指出。
grep系列函数其实包括grep、grepl、sub、gsub、regexpr、gregexpr,他们的参数很类似,在R中也是把帮助文档集成在了一起,查找任意一个都会得到一个统一的文档。里面对各个参数也是一起介绍的,除了刚才说的三个以外,第一个参数就是最重要的“pattern”,这是一个字符串,直接表示正则表达式,根据模式的不同注意规则就行,另外有个“x”表示要查找的向量,这也是R中的独特之处,不是查找文件,而是查找向量,该处也可以只输入一个字符串,就成了基础的字符串处理函数。对于grep函数,结果只有匹配或者不匹配,因此匹配时输出向量中该元素的下标,如果是单个字符就输出1,对于grepl,和grep其实一样,不过输出的是逻辑值,匹配就是T,不匹配就是F。参数“value”默认为F,输出的值就是刚才说的元素下标或者逻辑值,如果改成T,就会输出查找的字符串。还有一个参数“ignore.case”,默认是F,表示大小写敏感,可以改为T,表示大小写不敏感。参数“useBytes”默认是F,表示按字符查找,如果是T则表示按字节查找,对于中文字符影响还是很大的。参数“invert ”默认为F,表示正常的查找,如果为T则查找模式的补集。像sub和gsub这样的替换函数,还多一个参数“replacement”,用来表示替换的字符。
这些函数的参数都比较类似,但是输出各不一样,grep输出向量的下标,实际上就是找到与没找到,grepl返回的逻辑值更能说明问题。sub是一个很强大的替换函数,远胜过substr,正则表达式中可以设置非常灵活的规则,然后返回被替换后的字符串,如果正则表达式写得好,基本可以解决所有子字符串的问题。sub函数和gsub函数唯一的差别在于前者匹配第一次符合模式的字符串,后者匹配所有符合模式的字符串,也就是说在替换的时候前者只替换第一次符合的,后者替换所有符合的。regexpr和gregexpr被使用的似乎比较多,因为它们很像其他语言中的instr函数,可以查找到某些字符在字符串中出现的位置,不过我觉得用处并不是很大,因为通常情况下寻找某字符位置的目的就是为了做相关处理,而sub都能搞定。regexpr和gregexpr的关系和sub与gsub差不多,gregexpr操作向量时会返回列表。
以上就是grep系列函数的一些用法,根据例子可以很方便地使用,个人建议使用参数“pattern”和“x”就行(sub和gsub当然还有replacement),其他的都用默认的。在pattern中按照egrep的规则写正则表达式,基本上可以解决所有的字符串处理问题。只需要对正则表达式有简单的了解,就可以得到R中这些强大的功能。关于正则表达式的用法就在后文中分解了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27