京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”其实质是以冗杂多元化的海量数据为基础,结合“大数法则”和“大概率事件”理念,进行相关性、非精准的预测和目标探索。与事件式营销、清单精准销售等商业领域常见数据挖掘方式不同,“大数据”更具前瞻性、普适性。可以说,“大数据”既是一种分析手段,也是一种思维方式。在虚拟经济、网络生活日益丰富的今天,不难预见,“大数据”势必引发生活、工作与思维的大变革。
“云计算”还未走下神坛,“大数据”便已汹涌来袭,从马云[微博]的卸任演讲到《大数据时代》的热销,再到“大数据营销”、“大数据分析”、“大数据挖掘”等热词红极一时,“大数据”一夜间倍受世人瞩目。
然而,就当今中国信息化发展水平而言,论述“大数据”理念主导市场行为、引领时代潮流为时尚早。
首先,信息化基础薄弱。相较发达国家,我国尚处于电子化进程阶段,虽然PC技术、网络通讯日渐成熟,但规范化管理、集成式应用不足。同时,各行业信息化水平参差不齐,金融、通信、商贸领域水平较高,民生、行政、生产领域相对滞后。
其次,数据共享环境亟待完善。一是数据量庞大但标准化不足。各领域数据规格、统计口径、信息维度、存储方式等大相径庭,致使数据的跨行业应用难以形成规模。二是法律与监管环境尚不完善。在我国个人隐私的私密性保护、数据使用者的责权认定、信息共享环节的事权划分、流通与应用环节的监管等都处于探索阶段,跨行业的大数据分析尚且游走在法律边缘。
最后,非精准模式“逐利”性不强,原动力不足。当前,数据挖掘、行为分析、清单式管理等精准销售模式已经在网络购物、信息通讯等领域广泛应用,因其数据源要求单一、挖掘模型相对简单且因果性强,短期内仍将是各类商业机构的应用主体。而依靠海量数据相关性分析而产生的预测或目标,对数据基础要求高、过程复杂、见效相对缓慢,商业机构对“大数据”的应用往往是雷声大雨点小。
如果说发达国家处于“大数据”时代的早期,我国则尚处于“大数据”的探索期。必须从数据基础、数据管控、数据治理、数据处理、数据应用等维度做好前瞻性筹备,才能顺应时代潮流,紧随“大数据”时代步伐。
首先,提高社会信息化水平。按照国家“十二五”规划的信息化建设目标,重点关注经济、社会、政务、文化和军事领域的信息化建设。同时,着力提高信息的标准化水平。规范结构性数据采集,广泛积累沉淀非结构性数据,适时开展数据质量治理,提高信息的标准化程度。
其次,健全法律和监管机制。一方面,要丰富和完善法律法规,重点解决个人隐私保护、数据使用责权、反数据垄断等问题,使数据和信息的使用有法可依、有规可循。另一方面,应确立监管部门,完善监管机制、建立数据共享体系、执行数据管控职责。
最后,着力发展专业化的“大数据”行业。与美国拥有farecast、ITA
Software等公司不同,我国在“大数据”分析咨询领域尚属空白,“大数据”运行体系孕育着巨大的市场潜能。一是数据的采集与存储。境外分析机构多以互联网搜索、商业贸易、社交通讯为主体,未来百度[微博]、淘宝、腾讯等行业代表在数据源采集方面将大有可为。二是数据的分析与应用。“大数据”的商业价值毋庸置疑,竞争激烈和有着较高行为分析性需求的消费、民生、金融、行政领域必将成为“大数据”探索的先驱者。三是“大数据”的专业化创新。一方面,要加强信息处理、模型分析、数据应用方面的专业人才储备,培养懂得市场、了解数据、会用工具的综合型人才,由关注信息向关注技术转变。另一方面,大数据分析不仅是个人才华的展示,更是团队智慧的体现,思维创新型公司作为跨行业数据分析的专业机构,可以为商业部门提供专业咨询和可行性方案,深入探索“大数据”领域的行业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12