
大数据驱动银行业营销变革(2)_数据分析师
在这个过程当中,银行通过SAS工具搜集哪些数据?我们怎么判断这些数据是有用的,并且能高效地利用它们?
Karen Ganschow:银行业的一大优势,就是我们可以获取客户的交易数据,包括交易的流向、交易地点、交易的具体数额,且这些数据都是精准的,所以数据质量也很高。对银行来说,这是非常重要的客户数据来源。
与此同时,我们也更多地获取网银数据,通过网银可以观察到消费者在想什么,来进行营销探索,因此获得消费者体验的无缝连接。比方说,如果只是单纯地从交易数据进行推测、分析,可能这名消费者更愿意申请一张信用卡,但是通过整合的高级分析引擎得出的结论是,他可能对存款更感兴趣,进而银行会更有针对性地给这个客户进行推销。这就是我们所获得的改变。
“KnowMe”这个平台,我们其实更希望银行、客户、消费者之间建立长达一生的关系。基于这样的思想,我们重视每一次与客户的交互,也希望这样的数据更好地帮助客户,适时地向客户推荐正好需要的产品和服务,让客户获得很好的服务体验。
《中国经营报》:我相信,Westpac通过大数据挖掘一定获得了很好的收益。所以单纯从KnowMe平台来讲,哪些变化正在驱动着KnowMe项目?
Karen Ganschow:关于成功,我们有几个衡量的关键要素:客户满意度、客户对于银行的推崇情况以及最终我们在客户钱包当中所占的份额,这是我们所关注的三点。
过去两个月内所发布的数据显示,Westpac在客户满意度及客户推崇度方面,领先于澳大利亚其他的任何一家银行,目前排名第一。至于在客户钱包份额方面,我们与另外一家银行目前处于并列第一的状态。但是根据过去数据的轨迹显示,我们目前在采集客户数据、利用数据为消费者提供服务方面的能力不断提升。对于未来,我非常有信心。
通过数据驱动的营销方式,我们把掌握的信息和获得的洞察力逐渐转化成实际的利益。正如刚才我说的那样,我们非常看重的是客户的满意度,并且他是不是主动积极地跟他的亲朋好友推荐我们的银行,这其实是我们所测量的关键绩效指标--KPI。
所以,我们希望采用了数据驱动技术之后,给客户提供更加私人化的定制服务。作为银行,我们也希望能够赢得消费者他们更多的业务,除一些日常的银行业务外,还包括养老金存款、教育理财产品等。
但更加重要的是,银行要在正确的时间给客户提供私人定制服务,把一个恰当的产品推荐给他。而最关键的,我们希望以很大的规模来做这样的事情。一千万客户在中国不算什么,但是即便如此还是一个非常庞大的数据量,因为我们每个月要与客户进行7600万次的互动,所以SAS工具能够帮助我们把这些数据进行有效的整合、处理和分析。
可以说,KnowMe确实为我们增加了很多客户,也带来了很多收益,关键是要批量化地去做这个事情,因为就算能够实现给客户提供私人化定制服务,但如果只有一万人也没有太大的意义,所以说有一千万客户的时候如何把他进行大批量的复制,实现一对一的定制服务,这就牵扯到我之前提到的大量的数据交互。
我们有75%的客户已经拿到了他们最希望得到的产品推荐,这是我们值得称赞的成绩。在借用了SAS高性能分析工具以及整个我们所形成的数据分析生态系统之后,才能实现通过大批量的进行数据处理和分析来进行产品推荐。当我们首次给客户推荐一个意向产品的时候,虽然说也是在销售,但是因为非常契合他们自身实际,所以初次兑现接受率是50%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01