京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据驱动银行业营销变革(2)_数据分析师
在这个过程当中,银行通过SAS工具搜集哪些数据?我们怎么判断这些数据是有用的,并且能高效地利用它们?
Karen Ganschow:银行业的一大优势,就是我们可以获取客户的交易数据,包括交易的流向、交易地点、交易的具体数额,且这些数据都是精准的,所以数据质量也很高。对银行来说,这是非常重要的客户数据来源。
与此同时,我们也更多地获取网银数据,通过网银可以观察到消费者在想什么,来进行营销探索,因此获得消费者体验的无缝连接。比方说,如果只是单纯地从交易数据进行推测、分析,可能这名消费者更愿意申请一张信用卡,但是通过整合的高级分析引擎得出的结论是,他可能对存款更感兴趣,进而银行会更有针对性地给这个客户进行推销。这就是我们所获得的改变。
“KnowMe”这个平台,我们其实更希望银行、客户、消费者之间建立长达一生的关系。基于这样的思想,我们重视每一次与客户的交互,也希望这样的数据更好地帮助客户,适时地向客户推荐正好需要的产品和服务,让客户获得很好的服务体验。
《中国经营报》:我相信,Westpac通过大数据挖掘一定获得了很好的收益。所以单纯从KnowMe平台来讲,哪些变化正在驱动着KnowMe项目?
Karen Ganschow:关于成功,我们有几个衡量的关键要素:客户满意度、客户对于银行的推崇情况以及最终我们在客户钱包当中所占的份额,这是我们所关注的三点。
过去两个月内所发布的数据显示,Westpac在客户满意度及客户推崇度方面,领先于澳大利亚其他的任何一家银行,目前排名第一。至于在客户钱包份额方面,我们与另外一家银行目前处于并列第一的状态。但是根据过去数据的轨迹显示,我们目前在采集客户数据、利用数据为消费者提供服务方面的能力不断提升。对于未来,我非常有信心。
通过数据驱动的营销方式,我们把掌握的信息和获得的洞察力逐渐转化成实际的利益。正如刚才我说的那样,我们非常看重的是客户的满意度,并且他是不是主动积极地跟他的亲朋好友推荐我们的银行,这其实是我们所测量的关键绩效指标--KPI。
所以,我们希望采用了数据驱动技术之后,给客户提供更加私人化的定制服务。作为银行,我们也希望能够赢得消费者他们更多的业务,除一些日常的银行业务外,还包括养老金存款、教育理财产品等。
但更加重要的是,银行要在正确的时间给客户提供私人定制服务,把一个恰当的产品推荐给他。而最关键的,我们希望以很大的规模来做这样的事情。一千万客户在中国不算什么,但是即便如此还是一个非常庞大的数据量,因为我们每个月要与客户进行7600万次的互动,所以SAS工具能够帮助我们把这些数据进行有效的整合、处理和分析。
可以说,KnowMe确实为我们增加了很多客户,也带来了很多收益,关键是要批量化地去做这个事情,因为就算能够实现给客户提供私人化定制服务,但如果只有一万人也没有太大的意义,所以说有一千万客户的时候如何把他进行大批量的复制,实现一对一的定制服务,这就牵扯到我之前提到的大量的数据交互。
我们有75%的客户已经拿到了他们最希望得到的产品推荐,这是我们值得称赞的成绩。在借用了SAS高性能分析工具以及整个我们所形成的数据分析生态系统之后,才能实现通过大批量的进行数据处理和分析来进行产品推荐。当我们首次给客户推荐一个意向产品的时候,虽然说也是在销售,但是因为非常契合他们自身实际,所以初次兑现接受率是50%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17