京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据驱动银行业营销变革(1)_数据分析师
作为数据密集型行业,如何挖掘和分析来自不同渠道的海量数据,驱动营销变革,被认为是未来银行业赢得市场和竞争的关键。
在过去两年多的时间里,澳大利亚西太平洋银行集团(Westpac)借助SAS的分析工具打造了名为“KnowMe”的数据驱动营销平台,重塑了与近千万普通消费者及中小企业(五千万美元以下)客户的关系。现在,这一项目带来的收益正在逐渐显现。
图为澳大利亚西太平洋银行集团客户关系管理与数字化部总经理Karen Ganschow
日前,由全球领先的商业分析软件与服务供应商SAS公司与《财经》杂志、《哈佛商业评论》中文版联合举办的“2014营销战略领袖峰会”在京举行。
峰会期间,就“大数据驱动银行业营销变革”话题,澳大利亚西太平洋银行集团(Westpac)客户关系管理与数字化部负责人、总经理Karen Ganschow接受了《中国经营报》记者专访。
Karen Ganschow告诉记者,Westpac每月会与客户进行7600万次来自网点、呼叫中心、网银、移动端、社交媒体等渠道的互动,SAS工具能够帮助银行把这些数据进行有效的整合、处理和分析,进而在正确的时候为客户提供正好需要的私人化的服务。
了解客户不断变化的需求,被Karen Ganschow认为是传统银行业应对非金融机构冲击的关键。对未来大数据在银行业的应用趋势,Karen Ganschow表示,移动端、社交媒体是非常重要的趋势。
打造“KnowMe”数据驱动营销平台
《中国经营报》:面对大数据的挑战,在过去几年时间里,Westpac如何挖掘和分析数据并做出决策,驱动业务和营销的创新?
Karen Ganschow:对于像我们这样的银行来说,这是一个新的挑战。一方面我们需要更了解客户,同时也要了解技术的发展趋势。
SAS是我们的战略分析伙伴,对于银行管理者来说,它能够帮助我们预测、分析,并且给予贴身的指导,让我知道未来是哪个方向,有哪些间接的趋势。
两年多前,借助SAS的分析工具,银行打造了名为“KnowMe”的数据驱动营销平台。所谓“KnowMe”,直接翻译就是“了解我”,这也是银行客户所希望的,他们希望能够让银行更多地了解客户的私人情况,提供私人定制化的服务。对于千万客户量的用户,通过Excel工作表进行相关统计、分析显然是不足够的,且我们是要将一对一的个人交互进行大规模处理,所以在这方面我们需要科技支持。
就如亚马逊向客户推荐一本书一样,我们关注的是,如何把它转化成为一个现实的营销机会,向银行客户推荐产品,并且大规模化地在做这个事情。
《中国经营报》: “KnowMe”与一般的银行营销平台有何不同?
Karen Ganschow:简而言之,这是一个数据驱动的、通过多种渠道为客户提供体验的平台。
首先,通过这个平台,银行内部各个部门可以获取感兴趣的数据。同时,我们建立了中心决策机制,与此前以产品为核心的营销模式不同,现在我们围绕客户为中心做出决策。第三,平台将一线、前端业务整合在一起,比如,支行每个店面与客户的沟通、呼叫中心接到的客户电话、联络中心主动与客户的沟通等,这都是我们获取数据的渠道。同时,我们也借助社交媒体有针对性地、定向地向客户推送信息。
当初我们决定上“KnowMe”这个项目的时候,对于合作伙伴的选择也是经过认真考虑和挑选的。实际上,SAS在技术方面与其他我们备选的合作伙伴是很接近的。但SAS最终脱颖而出在于人的因素。SAS除了能够提供非常优质或者说精益求精的技术外,整个SAS团队在合作、沟通交流方面也是非常强的,并帮助银行取得了很大收益和成效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31