
避免这7个数据错误,让你的数据分析更有效率
数据正在成为现代企业的一个更重要的工具,几乎可以作为一种货币,它可以从衡量营销活动的有效性到评估员工绩效等方面促进一切。但许多企业家认为数据本身就是有价值的。企业拥有的数据越多越好,如果有的话,企业会做出更好的决定,此时数据分析师就担任的重要角色。
事实上,收集数据只是开展业务过程的第一步,单凭数据就无法对企业业务进行全面准确的描述。
如果企业想要获得成功的话,也需要能够有效地收集、组织、解释、展示这些数据,而大多数人都犯了阻止他们这样做的严重错误。
最常见的错误
在数据分析中一定避免这些严重的错误:
1.没有收集足够的数据。采用“越多数据越好”的理念来运行业务是一个糟糕的主意,因为它没有将数量与优先级相区分。但是,在开始信任这种结论之前,企业需要最少量的数据。例如,如果企业有1000个客户,则无法选择其中的2个进行访问,因此企业需要一个更大、更具代表性的样本量。
2.收集错误的数据类型。企业也可能收集错误的数据类型。如果企业经营的是一家汽车维修店,却了解目标人群的饮食习惯,那么这些信息对其不会有帮助。当然,这是一个令人震惊的例子,但原理是一样的。企业需要收集数据点,以便你得出结论并采取行动,而不是为了收集数据而收集数据。
3.使用错误的仪表板。企业的仪表板对其结果的影响比人们想象的要大。这些工具负责将企业的所有数据收集在一个地方,为其提供强化数据和生成报告,并为多个团队成员提供访问权限。有这么多的选项可供选择,很难说哪一个是企业业务的正确选择,但是如果企业想要获得最好的工具,则需要通读所有这些选项。否则,企业可能会花费过多的时间来培训新员工,或者生成没有强调关键变量的乏味报告。
4.容许偏见扭曲自己的结论。人的思想有很大的缺陷,因此在分析数据时相信自己的直觉通常是一个坏主意。人们很容易出现一系列的认知偏差,从确认偏差到生存偏差,甚至可能很快扭曲人们面前的客观信息。最好是学习这些认知偏差,并找出弥补方法,所以人们的结论不会混乱或扭曲。
5.比较苹果和橙子。大多数新手试图在没有进行比较的时候达到目的,将一个选择的数据与另一个选择的数据相比较。这种“苹果对橙子”的比较可能会导致错误的结论,所以最好尽可能地比较自己的数据集。
6.未能隔离变量。现代应用程序通常需要审查数十个甚至数百个不同的变量,尤其是在营销行业。当企业发现一个相关性,如内容长度和访问者之间的关系时,很容易得出因果关系,但是这是很危险的(有时候也是搞笑的)。相反,企业需要隔离正在使用的变量,以便可以证明或反驳因果关系,并了解更多关于数据点之间的关系。
7.提出错误的问题。数据本身不会给企业任何结论。企业的图表和图形通常不会带来一个明显的突破。相反,企业需要提问您的数据,并使用所需的工具来发现答案。如果所问的是错误的问题,无论是误导性的还是不可行的,数据的性能如何,或者工具的直观程度如何,都无关紧要。
数据并不完美
数据是如此有价值以至于已经变得商品化,这是事实,但除非你知道如何有效地使用数据,否则它实际上是毫无价值的。企业的方法,组织方法,甚至是其解释总是会出现问题,但是企业对最佳实践的熟悉程度越高,就越有责任有效地利用其数据,企业就越有可能获得准确、有价值的结论。不要认为自己的努力正在发挥作用,挑战他们,并不断调整自己的方法,发现隐藏的偏见,提出更好的问题,并从分析工作中获得更多的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11