京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据兴起 重复数据删除4项注意
根据全球市场的反馈来看,IT技术推动公司的历程性进步,继续着信息革命时代的传奇。重复数据删除技术目前已成为存储行业最为热门的技术,不仅众多厂商极力推荐其重复数据删除产品,广大用户也在热切的关注着重复数据删除技术。
从全球企业界兴起的这种热闹局面,主要是由当前经济大环境不景气的外部原因,以及企业自身数据飞速增长的内部原因共同形成。作为重复数据删除产品越来越受用户关注的同时,其功能作用也被过分的放大,成为厂商推销其产品的卖点和噱头。就此问题,用户在选择重复数据删除产品时还需要谨慎起见。
重复数据删除对你是否有意义?
那用户首先需要问自己的就是是否真的需要重复数据删除技术。就目前的一些调查情况来看:一些类似医疗影像处理的数据并不适合进行重复数据删除,另外金融、电信等对数据可靠性要求比较高的行业对重复数据删除也需要谨慎对待。用户如果赶时髦、追潮流,不考虑自身企业的数据情况,购买重复数据删除产品只能取得适得其反的结果。
事实上,这种只保存数据单一实例的技术早已存在,只是在备份领域中才被突显出来,并定名为重复数据删除。正是由于企业在备份过程中存储了大量的重复数据、浪费了大量存储空间,最终才催化出重复数据删除技术。重复数据删除的宗旨就是为企业用户的备份解决方案服务,使得企业备份解决方案更加完善、高效。如果脱离这个宗旨,厂商一味强调重复数据删除的一些优点,却忽视企业在数据安全性和备份等方面可能做出的巨大牺牲,那么毫无疑问,这种本末倒置的作法最终受害的将是用户。
因此,用户在选购重复数据删除产品时需要思考重复数据删除是否对你有意义?你的企业是否真的需要重复数据删除?如果厂商不顾你的现实情况,不负责任的向你推销其重复数据删除产品,那么恭喜你,你遇到“骗子”了……
重复数据删除对现有备份环境是否造成影响?影响有多大?
企业用户备份做两次全备份时间间隔一般不长,通常只有不超过5%的数据是不同的,剩余大部分数据都是相同的,因此,重复数据删除绝对可以给企业备份系统带来很大的好处。从而衍生出这样一个问题:重复数据删除是否会对企业现有备份环境造成影响?可能会造成什么样的影响?这种影响有多大?
如果你的备份环境已经有比较长的时间了,各项备份机制都趋于完善,这个时候你应该考虑加入重复数据删除解决方案。那么你要选择什么样的重复数据删除产品呢?是选择在线处理方式(In-line)的重复数据删除产品,还是选择后处理方式(Post-Processing)的重复数据删除产品呢?这里需要告诫你的是:In-line方式可能并不适合你当前的备份环境。因为In-line方式可能给你的备份环境带来很大的改变,不仅可能你的备份软件需要升级、备份设备需要更换,还可能出现备份机制、备份习惯的通通改变。更有可能出现,改变现有备份环境会使备份处理的速度变的很慢,甚至引发无法预计且不可恢复的数据丢失。所以如果用户不仔细考虑重复数据删除产品对现有备份环境的影响,则很可能将已有的备份环境做出巨大改变,而这种巨大的改变也犯了IT建设之大忌。
因此,用户在选购重复数据删除产品之前必须对所选产品对现有备份环境的影响进行评估,尽量选择那些对已有备份环境没有影响的产品。
单一不重复数据的安全性该如何保障?
当用户选择好重复数据删除产品进行重复数据删除操作后会猛然发现这么一个问题:进行完重复数据删除后,我的数据只剩下单一不重复数据,更为要命的是单一不重复数据是集中保存在一个存储区域中。单一不重复数据的安全性瞬间就成为用户最为棘手问题,用户会发现自己把宝都押在同一个地方,仿佛就是把所有鸡蛋都放在了同一个篮子里。这时候,VTL在重复数据删除解决方案中的重要性就显现出来了。用户可以在VTL中再拷贝一份单一不重复数据,还可以通过远程镜像技术将数据镜像到不同地域的不同存储设备上。另外,还可以通过这种高可用性(HA)架构来消除单点故障(SPOF),提高VTL系统自身的高可靠性,使整个备份系统更安全。
你想把自己所有鸡蛋都放在一个篮子里,然后终日过着如履薄冰、胆战心惊、诚惶诚恐的日子吗?如果不想,那么请你在选择重复数据删除解决方案时,仔细思考一下单一不重复数据安全的安全性问题!如果厂商解决方案不能够很好解决这个重要问题,毫无疑问的恭喜你,你可能又遇到一个“大忽悠”!
扩展性与成本对于重复数据删除技术很重要吗?
用户选择了重复数据删除技术并不意味着以后就万事大吉,数据量该增长还得增长,存储容量该增加还得增加,用户还得去面对存储解决方案可扩展性的问题。
从长远的角度来看,单台重复数据删除设备根本无法满足企业的需求,企业将来也必然会面对多台重复数据删除设备,这就凸现出下面的情况:企业考虑用多台重复数据删除设备来完成备份,那么每台重复数据删除设备能否识别自身已备份的数据在其他设备上是否也已经备份了?出现这种情况是否会影响到整个备份系统的重复数据删除比?是否会增加维护的难度?
因此企业将来面对的集群架构必须具有良好的扩展能力和集群式的重复数据删除技术。集群架构应该是通过统一性的添加VTL节点来扩展,还需要能够做到任意时间添加存储而不出现中断处理的情况。只有这样才能够具有最优的管理能力和扩展能力。如果厂商不能够提供很好的扩展方案,那么极易形成备份孤岛,那时,用户的设备采购成本、管理复杂性和管理成本都将加大的增加。
综上所述,用户选购重复数据删除产品时,应该以正确的心态去面对它,本文上面提到重复数据删除产品选购四大注意事项:重复数据删除是否对你有意义、重复数据删除对现有备份环境有多大影响、重复数据安全性如何保障、重复数据删除的扩展性和成本,正是从用户自身角度来看待重复数据删除产品。专家表示,相信用户只要很好的遵循这四个角度去选购重复数据删除产品,一定能够选购到最适合自己的产品,也一定能够让用户的备份环境得到更好的优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27