
大数据兴起 重复数据删除4项注意
根据全球市场的反馈来看,IT技术推动公司的历程性进步,继续着信息革命时代的传奇。重复数据删除技术目前已成为存储行业最为热门的技术,不仅众多厂商极力推荐其重复数据删除产品,广大用户也在热切的关注着重复数据删除技术。
从全球企业界兴起的这种热闹局面,主要是由当前经济大环境不景气的外部原因,以及企业自身数据飞速增长的内部原因共同形成。作为重复数据删除产品越来越受用户关注的同时,其功能作用也被过分的放大,成为厂商推销其产品的卖点和噱头。就此问题,用户在选择重复数据删除产品时还需要谨慎起见。
重复数据删除对你是否有意义?
那用户首先需要问自己的就是是否真的需要重复数据删除技术。就目前的一些调查情况来看:一些类似医疗影像处理的数据并不适合进行重复数据删除,另外金融、电信等对数据可靠性要求比较高的行业对重复数据删除也需要谨慎对待。用户如果赶时髦、追潮流,不考虑自身企业的数据情况,购买重复数据删除产品只能取得适得其反的结果。
事实上,这种只保存数据单一实例的技术早已存在,只是在备份领域中才被突显出来,并定名为重复数据删除。正是由于企业在备份过程中存储了大量的重复数据、浪费了大量存储空间,最终才催化出重复数据删除技术。重复数据删除的宗旨就是为企业用户的备份解决方案服务,使得企业备份解决方案更加完善、高效。如果脱离这个宗旨,厂商一味强调重复数据删除的一些优点,却忽视企业在数据安全性和备份等方面可能做出的巨大牺牲,那么毫无疑问,这种本末倒置的作法最终受害的将是用户。
因此,用户在选购重复数据删除产品时需要思考重复数据删除是否对你有意义?你的企业是否真的需要重复数据删除?如果厂商不顾你的现实情况,不负责任的向你推销其重复数据删除产品,那么恭喜你,你遇到“骗子”了……
重复数据删除对现有备份环境是否造成影响?影响有多大?
企业用户备份做两次全备份时间间隔一般不长,通常只有不超过5%的数据是不同的,剩余大部分数据都是相同的,因此,重复数据删除绝对可以给企业备份系统带来很大的好处。从而衍生出这样一个问题:重复数据删除是否会对企业现有备份环境造成影响?可能会造成什么样的影响?这种影响有多大?
如果你的备份环境已经有比较长的时间了,各项备份机制都趋于完善,这个时候你应该考虑加入重复数据删除解决方案。那么你要选择什么样的重复数据删除产品呢?是选择在线处理方式(In-line)的重复数据删除产品,还是选择后处理方式(Post-Processing)的重复数据删除产品呢?这里需要告诫你的是:In-line方式可能并不适合你当前的备份环境。因为In-line方式可能给你的备份环境带来很大的改变,不仅可能你的备份软件需要升级、备份设备需要更换,还可能出现备份机制、备份习惯的通通改变。更有可能出现,改变现有备份环境会使备份处理的速度变的很慢,甚至引发无法预计且不可恢复的数据丢失。所以如果用户不仔细考虑重复数据删除产品对现有备份环境的影响,则很可能将已有的备份环境做出巨大改变,而这种巨大的改变也犯了IT建设之大忌。
因此,用户在选购重复数据删除产品之前必须对所选产品对现有备份环境的影响进行评估,尽量选择那些对已有备份环境没有影响的产品。
单一不重复数据的安全性该如何保障?
当用户选择好重复数据删除产品进行重复数据删除操作后会猛然发现这么一个问题:进行完重复数据删除后,我的数据只剩下单一不重复数据,更为要命的是单一不重复数据是集中保存在一个存储区域中。单一不重复数据的安全性瞬间就成为用户最为棘手问题,用户会发现自己把宝都押在同一个地方,仿佛就是把所有鸡蛋都放在了同一个篮子里。这时候,VTL在重复数据删除解决方案中的重要性就显现出来了。用户可以在VTL中再拷贝一份单一不重复数据,还可以通过远程镜像技术将数据镜像到不同地域的不同存储设备上。另外,还可以通过这种高可用性(HA)架构来消除单点故障(SPOF),提高VTL系统自身的高可靠性,使整个备份系统更安全。
你想把自己所有鸡蛋都放在一个篮子里,然后终日过着如履薄冰、胆战心惊、诚惶诚恐的日子吗?如果不想,那么请你在选择重复数据删除解决方案时,仔细思考一下单一不重复数据安全的安全性问题!如果厂商解决方案不能够很好解决这个重要问题,毫无疑问的恭喜你,你可能又遇到一个“大忽悠”!
扩展性与成本对于重复数据删除技术很重要吗?
用户选择了重复数据删除技术并不意味着以后就万事大吉,数据量该增长还得增长,存储容量该增加还得增加,用户还得去面对存储解决方案可扩展性的问题。
从长远的角度来看,单台重复数据删除设备根本无法满足企业的需求,企业将来也必然会面对多台重复数据删除设备,这就凸现出下面的情况:企业考虑用多台重复数据删除设备来完成备份,那么每台重复数据删除设备能否识别自身已备份的数据在其他设备上是否也已经备份了?出现这种情况是否会影响到整个备份系统的重复数据删除比?是否会增加维护的难度?
因此企业将来面对的集群架构必须具有良好的扩展能力和集群式的重复数据删除技术。集群架构应该是通过统一性的添加VTL节点来扩展,还需要能够做到任意时间添加存储而不出现中断处理的情况。只有这样才能够具有最优的管理能力和扩展能力。如果厂商不能够提供很好的扩展方案,那么极易形成备份孤岛,那时,用户的设备采购成本、管理复杂性和管理成本都将加大的增加。
综上所述,用户选购重复数据删除产品时,应该以正确的心态去面对它,本文上面提到重复数据删除产品选购四大注意事项:重复数据删除是否对你有意义、重复数据删除对现有备份环境有多大影响、重复数据安全性如何保障、重复数据删除的扩展性和成本,正是从用户自身角度来看待重复数据删除产品。专家表示,相信用户只要很好的遵循这四个角度去选购重复数据删除产品,一定能够选购到最适合自己的产品,也一定能够让用户的备份环境得到更好的优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22