
企业通过大数据获得更多的业务拓展
如今谈及企业信息化,大数据当之无愧的成为今天最热门的技术之一。信息化对于企业有多重要?这个问题放在三十年前,可能多数的国内企业并不十分明了,但是如今再问及这个问题,相信绝大多数企业的普通员工都可以出口成章。近些年来国内企业对于信息化的关注程度越发加深,国内企业的信息化普及度也得到迅速提升。中国已经成为众多跨国软件企业的关注焦点。
第一,物联网及由传感器驱动的信息网的不断发展。物联网已经成了大家关注的又一新兴名词,伴随着物联网不断发展,物联网的各个终端每分每秒都将产生海量的数据,这无疑需要大数据技术对这些信息进行分析处理,以发挥物联网的效用。这也就促进了大数据技术的不断推进。
第二,云计算及社交媒体普及。云计算与大数据自出生以来似乎就是"好伴侣",大数据的发展刺激了云计算技术的不断发展,而云计算的迅速发展和普及也为大数据的应用提供了更好的保障,两者在某些方面起到了相互推进的作用。社交媒体运用大数据后能够为用户提供更好的服务和更高便利,当社交网络成为趋势,大数据技术也不可避免的被推到"风口浪尖"。
第三,迅速增长的线上交易。近年来淘宝、京东等线上交易平台不断涌现,我国电子商务领域已经有了突飞猛进的发展。大数据技术为我国的电子商务营销提供了最精准、最有效的支撑。通过大数据技术,对客户的消费行为及喜好进行分析,可以做到消费品的精准推荐,进而促进消费。在今年的SAP中国商业同略会主题演讲中,就多次提及中国的"双十一",双十一的消费数额可谓惊人,中国线上交易数量的激增也成为SAP将大数据战略规划作为其中国市场战略的重点原因之一。
采访过程中,路凯文还表示,在以上的三方面,中国都毫无疑问是整个世界的领导者。首先,因为中国是世界范围内最大的制造业国家,并且在智能设备的使用方面,中国也是世界的领先者。其次就是社交媒体方面,"正如SAP联席CEO孟鼎铭先生说的,在中国的社交媒体数量要远远超过世界上任何一个国家。"最后,路凯文感叹道:"世界上再找不出第二个国家,在线上买卖的金额能够像中国这么大。"这些都促使中国大数据技术成为代表世界的"完美风暴"。
如今互联网上大概有150亿的终端设备或人与互联网进行互联,到2020年左右,这个数字将增加到500亿,也就是说,将有500亿的物件和设备是互相联系的。因此大数据将拥有对工作及生活产生极大影响和改变的能力。"我为身处于这样一个大数据的时代感到非常的兴奋。"路凯文说。
正是看到了大数据的巨大发展潜力和中国庞大的市场需求,众多厂商纷纷开始耕耘中国的大数据市场。SAP也不例外,面对大数据技术的蓬勃发展,SAP推出了其全新的SAPHANA解决方案,以帮助开拓其在中国的大数据市场。
在今年的SAP中国商业同略会上,SAP的各位高层就着重介绍了SAPHANA解决方案。SAPHANA基于云计算及大数据为企业提供了十分便捷、高效并易于管理的企业平台,无论是在存储、部署和计算分析方面都有涉猎,看似被打造成了一个全能的平台,但这可能会跟客户传统的数据库使用方式并不太一样,当被问及SAP将如何让客户接受这种方式时,路凯文利用苹果手机举了一个生动的比喻,"在苹果推出iPhone之前,手机就是手机,不是智能电话,数码相机也仅是相机而已。当时如果大家想要上网都需要通过计算机浏览。苹果的伟大之处不是在于他创造了一部电话,而是他选择了那些对于我们非常重要并且非常习以为常的功能,将他们捆绑结合在一个平台中。同样的道理,SAP现在所做的事情和苹果所做的事情有异曲同工之妙。" 路凯文表示,SAP在技术方面所做的努力都是为了帮助客户在使用这些技术时能够识别新的商业机会,能够创造出新的商业价值。因此在设计过程中一切都是以客户的需要为前提的,所以SAP也会认真倾听客户在业务或技术使用上的一些需求和想法。SAP亚太及日本区数据库、技术、分析和移动平台解决方案部高级副总裁麦马翰也说道:"在中国,我们做了很多HANA的推广及相关的教育,并且通过多方合作来对客户进行培训,以便其了解SAPHANA应用后,不需要操心很多关于技术方面或者系统架构方面的事情。所以SAPHANA的好处也就是使用户不再需要花过多的时间和精力去关注整个技术的架构,而可以把更多的精力放在业务上。"
最后,面对SAP是否能够改变用户以往的使用习惯并在大数据应用方面切实帮助企业的质疑,麦马翰表示,SAP拥有40年的企业服务经验,了解各行各业的业务及企业发展特点,这将成为他们拓展中国市场的巨大优势。"这是我们非常重要的优势,我们知道这些行业的情况,也知道如何帮助这些行业客户在他们以往开展业务的基础之上,基于新的大数据,从中获取新的机会。"麦马翰说到。
中国的大数据市场的潜力是无限的,正如SAP这样的国际厂商正在不断涌入中国广阔的市场当中。相信今后越来越的企业会通过大数据技术完善自身的企业信息化,并且通过大数据技术获得更多的发展机会和业务拓展。现在,大数据技术无疑已经成了企业的新兴"淘金术"。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07