京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业通过大数据获得更多的业务拓展
如今谈及企业信息化,大数据当之无愧的成为今天最热门的技术之一。信息化对于企业有多重要?这个问题放在三十年前,可能多数的国内企业并不十分明了,但是如今再问及这个问题,相信绝大多数企业的普通员工都可以出口成章。近些年来国内企业对于信息化的关注程度越发加深,国内企业的信息化普及度也得到迅速提升。中国已经成为众多跨国软件企业的关注焦点。
第一,物联网及由传感器驱动的信息网的不断发展。物联网已经成了大家关注的又一新兴名词,伴随着物联网不断发展,物联网的各个终端每分每秒都将产生海量的数据,这无疑需要大数据技术对这些信息进行分析处理,以发挥物联网的效用。这也就促进了大数据技术的不断推进。
第二,云计算及社交媒体普及。云计算与大数据自出生以来似乎就是"好伴侣",大数据的发展刺激了云计算技术的不断发展,而云计算的迅速发展和普及也为大数据的应用提供了更好的保障,两者在某些方面起到了相互推进的作用。社交媒体运用大数据后能够为用户提供更好的服务和更高便利,当社交网络成为趋势,大数据技术也不可避免的被推到"风口浪尖"。
第三,迅速增长的线上交易。近年来淘宝、京东等线上交易平台不断涌现,我国电子商务领域已经有了突飞猛进的发展。大数据技术为我国的电子商务营销提供了最精准、最有效的支撑。通过大数据技术,对客户的消费行为及喜好进行分析,可以做到消费品的精准推荐,进而促进消费。在今年的SAP中国商业同略会主题演讲中,就多次提及中国的"双十一",双十一的消费数额可谓惊人,中国线上交易数量的激增也成为SAP将大数据战略规划作为其中国市场战略的重点原因之一。
采访过程中,路凯文还表示,在以上的三方面,中国都毫无疑问是整个世界的领导者。首先,因为中国是世界范围内最大的制造业国家,并且在智能设备的使用方面,中国也是世界的领先者。其次就是社交媒体方面,"正如SAP联席CEO孟鼎铭先生说的,在中国的社交媒体数量要远远超过世界上任何一个国家。"最后,路凯文感叹道:"世界上再找不出第二个国家,在线上买卖的金额能够像中国这么大。"这些都促使中国大数据技术成为代表世界的"完美风暴"。
如今互联网上大概有150亿的终端设备或人与互联网进行互联,到2020年左右,这个数字将增加到500亿,也就是说,将有500亿的物件和设备是互相联系的。因此大数据将拥有对工作及生活产生极大影响和改变的能力。"我为身处于这样一个大数据的时代感到非常的兴奋。"路凯文说。
正是看到了大数据的巨大发展潜力和中国庞大的市场需求,众多厂商纷纷开始耕耘中国的大数据市场。SAP也不例外,面对大数据技术的蓬勃发展,SAP推出了其全新的SAPHANA解决方案,以帮助开拓其在中国的大数据市场。
在今年的SAP中国商业同略会上,SAP的各位高层就着重介绍了SAPHANA解决方案。SAPHANA基于云计算及大数据为企业提供了十分便捷、高效并易于管理的企业平台,无论是在存储、部署和计算分析方面都有涉猎,看似被打造成了一个全能的平台,但这可能会跟客户传统的数据库使用方式并不太一样,当被问及SAP将如何让客户接受这种方式时,路凯文利用苹果手机举了一个生动的比喻,"在苹果推出iPhone之前,手机就是手机,不是智能电话,数码相机也仅是相机而已。当时如果大家想要上网都需要通过计算机浏览。苹果的伟大之处不是在于他创造了一部电话,而是他选择了那些对于我们非常重要并且非常习以为常的功能,将他们捆绑结合在一个平台中。同样的道理,SAP现在所做的事情和苹果所做的事情有异曲同工之妙。" 路凯文表示,SAP在技术方面所做的努力都是为了帮助客户在使用这些技术时能够识别新的商业机会,能够创造出新的商业价值。因此在设计过程中一切都是以客户的需要为前提的,所以SAP也会认真倾听客户在业务或技术使用上的一些需求和想法。SAP亚太及日本区数据库、技术、分析和移动平台解决方案部高级副总裁麦马翰也说道:"在中国,我们做了很多HANA的推广及相关的教育,并且通过多方合作来对客户进行培训,以便其了解SAPHANA应用后,不需要操心很多关于技术方面或者系统架构方面的事情。所以SAPHANA的好处也就是使用户不再需要花过多的时间和精力去关注整个技术的架构,而可以把更多的精力放在业务上。"
最后,面对SAP是否能够改变用户以往的使用习惯并在大数据应用方面切实帮助企业的质疑,麦马翰表示,SAP拥有40年的企业服务经验,了解各行各业的业务及企业发展特点,这将成为他们拓展中国市场的巨大优势。"这是我们非常重要的优势,我们知道这些行业的情况,也知道如何帮助这些行业客户在他们以往开展业务的基础之上,基于新的大数据,从中获取新的机会。"麦马翰说到。
中国的大数据市场的潜力是无限的,正如SAP这样的国际厂商正在不断涌入中国广阔的市场当中。相信今后越来越的企业会通过大数据技术完善自身的企业信息化,并且通过大数据技术获得更多的发展机会和业务拓展。现在,大数据技术无疑已经成了企业的新兴"淘金术"。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04