
大数据时代,看“小数据”如何支持决策
大数据被炒得火热,“小数据”的重要性也不能忽视,“小数据”并不是说数据量小,而是指有针对性的、可用于支持决策的高质量数据,不需要复杂的算法、昂贵的硬件、高额的费用,任何组织、企业甚至个人都可以实现对“小数据”的分析和管理。学会简单的算法,利用好“小数据”,人人都可以成为“数据科学家”。全球著名咨询公司Booz & Company合伙人David Meer为我们解读“小数据”的妙用。
以下为译文:
回想起我在JWT广告公司工作的时候,我们的一位客户——一名美国海军陆战队上校——说了一件一直困扰我的事情。“你想想,”他说,“如果我在战场上坚守一个山头,这时我得到一份情报,即使我不能确定它100%准确,我也会基于那份情报做决定。”他的观点是有情报总比没有好——如果仅仅因为情报不确定就忽视它,那你就太傻了。
当然,关于大数据是否真的能给公司带来更大的客户洞察力和运营效率,有很大的争议。但很多公司(可能不是大多数),在新兴市场、B2B工业、高度专业化或集中市场等数据相对较少的环境中运作。这些公司对我所说的“小数据”一定会满意的。对他们来说,上校的话比最新数据挖掘算法或公共讲座更能产生共鸣。
在我最近一篇博客中,我提出一个观点:大数据的含义已经不仅仅是新的数据源、分析技术和科技,而是一种范式转变——从基于直觉的管理向数据驱动决策转变——这种转变已经开始,而且越来越快。对于公司在没有完整干净市场数据的情况下经营,这意味着需要尽力更好地利用对他们有用的数据(这些数据或许并不完美),或使用低成本方法来创建新的数据。
下面是几个成功的案例:
一家工业涂料制造商按照客户和区域差别定价,所以它不能使用经典回归分析方法建立稳定的价格弹性模型。然而,通过使用其他的分析技术,该公司能够确定具体的领域,以提高定价和服务政策。它转向基于价值的定价方法以确保其最有价值的客户得到最高级别服务。仅仅在一个地区的一个业务单元中实施,就使销售额上升了4%。
一大型饮料制造商想要提升其酒吧、餐馆和娱乐场所的营业额。可用的联合信息基于一个标准细分计划,没有能够足够深入了解如何为不同阶层服务。该公司用观测研究定义更多可操作的部分,但需要一种方法来量化分割。它基于可观察到的特征开发了一个算法,然后用一个经典的小数据技术,要求专业销售人员基于算法对他们负责的区域内酒吧和餐馆进行划分。定制产品的分类、定价,和为每个主要阶段制定市场营销计划。在两个大城市试点项目的销售总额和市场份额有了显著的提升,目前已经在全国范围内推广。
区域健康保险公司试图在卓越的客户体验上使自己脱颖而出,意识到其电话中心是关于客户痛点及解决方案的一个潜在数据来源。该公司采取了来电评分单,不仅仅是客服代表输入的摘要,还可以应用文本挖掘算法。它能够改进书面通信的格式和语言、简化电话中心服务流程。此外,该公司发现了可以在某些社区介绍店面位置,以方便客户交互,提高用户忠诚度。
中国大家电巨头海尔使用服务技术人员收集到的信息推动创新。例如,一些技术人员发现农村客户用其洗衣机来洗菜,导致洗衣机堵塞。海尔利用此信息开发了一种新型的洗衣机,该公司表示,“主要是用于洗衣服、甜土豆和花生。”
这些例子中没有一个涉及昂贵的硬件、软件或技术设备。数据采集费用低,在某些情况下,根本不用花钱。
利用这种数据需要的是一点点创造力和边干边学的意愿。选择一个产品、一个地区和一个需要注意的问题,运行一个试点项目。用这种方法,你可以向自己以及组织中其他人展示努力的回报,成本也控制在合理的范围。据我了解一旦公司开始在数据分析中投资,他们几乎从来不会停止,因为他们在业务中了解到的事情带来的收益远高于分析成本。数据分析产生的收益已经足够维持自身的发展了。高管可以深入了解怎样提高自己的竞争地位,或者要把数据分析应用到海军陆战队上校可能需要的地方——确定什么时候可以攻上山头进行突袭。很难为这样的“小数据”贴上价格标签。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11