京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python数据分析:股价相关性
为什么要分析股价相关度呢,我们来引入一个概念——配对交易
所谓的配对交易,是基于统计套利的配对交易策略是一种市场中性策略,具体的说,是指从市场上找出历史股价走势相近的股票进行配对,当配对的股票价格差偏离历史均值时,则做空股价较高的股票同时买进股价较低的股票,等待他们回归到长期均衡关系,由此赚取两股票价格收敛的报酬。
接下来开始我们的股价相关度分析,首先我们选两个股票~

感觉全聚德和光明乳业都很好吃的样子,我们就选它们了吧!= ̄ω ̄=
1、导入数据包
简单介绍一下要用到的数据包
matplotlib.pyplot:绘图库,其中pyplot子包提供一个类MATLAB的绘图框架
numpy:科学计算库,支持高级大量的维度数组与矩阵运算
pandas:纳入了大量库和一些标准的数据模型,提供高效地操作大型数据集所需的工具
tushare:财经数据接口包
[python] view plain copy
<span style="font-size:18px;">import matplotlib.pyplot as plt </span>
<span style="font-size:18px;">import numpy as np</span>
<span style="font-size:18px;">import pandas as pd</span>
<span style="font-size:18px;">import tushare as ts
</span>
2、根据全聚德和光明乳业的股票代码获取数据,这里获取的是2016年一整年的收盘价,获取完后合并,因为停牌的存在,用前一天的价格去填写缺失数据,最终以CSV格式保存数据
[python] view plain copy
<span style="font-size:18px;">s_qjd = '002186' #全聚德</span>
<span style="font-size:18px;">s_gm = '600597' #光明乳业</span>
<span style="font-size:18px;">sdate = '2016-01-01'#起止日期</span>
<span style="font-size:18px;">edate = '2016-12-31'</span>
<span style="font-size:18px;">df_qjd = ts.get_h_data(s_qjd,
start = sdate, end = edate).sort_index(axis =
0,ascending=True)#获取历史数据</span>
<span
style="font-size:18px;">df_gm = ts.get_h_data(s_gm, start = sdate,
end = edate).sort_index(axis = 0,ascending=True)</span>
<span style="font-size:18px;">df =
pd.concat([df_qjd.close,df_gm.close], axis = 1, keys=['qjd_close',
'gm_close'])#合并</span>
<span style="font-size:18px;">df.ffill(axis=0, inplace=True)#填充缺失数据</span>
<span style="font-size:18px;">df.to_csv('qjd_gm.csv')
</span>

3、用pearson相关系数计算相关度(Pearson相关系数是用来衡量两个数据集合是否在一条线上面,它用来衡量定距变量间的线性关系。),再打印出来看一眼
[python] view plain copy
<span style="font-size:18px;">corr = df.corr(method = 'pearson', min_periods = 1)#pearson方法计算相关性</span>
<span style="font-size:18px;">print(corr)</span>

算出来有0.81,超过0.8,按值域等级来说属于极强相关,不过话说一个卖烤鸭的为什么会和卖牛奶的相关度那么高。。。。难道大家吃烤鸭的时候都喜欢喝牛奶吗。。。
4、绘制图像出来喵一眼,看看趋势上来说什么时候可以有机会做配对交易
[python] view plain copy
<span style="font-size:18px;">df.plot(figsize = (20,12))</span>
<span style="font-size:18px;">plt.savefig('qjd_gm.jpg')</span>
<span style="font-size:18px;">plt.close()</span>

5、按分析日期的第一天的股价为基准做归一化处理,打印图像
[python] view plain copy
<span style="font-size:18px;">df['qjd_one'] = df.qjd_close / float(df.qjd_close[0])*100</span>
<span style="font-size:18px;">df['gm_one'] = df.gm_close / float(df.gm_close[0])*100</span>
<span style="font-size:18px;">df.qjd_one.plot(figsize = (20,12))</span>
<span style="font-size:18px;">df.gm_one.plot(figsize = (20,12))</span>
<span style="font-size:18px;">plt.savefig('qjd_gm_one.jpg')</span>
<span style="font-size:18px;">
</span>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11