
各种相似度计算的python实现
在数据挖掘中有很多地方要计算相似度,比如聚类分析和协同过滤。计算相似度的有许多方法,其中有欧几里德距离、曼哈顿距离、Jaccard系数和皮尔逊相关度等等。我们这里把一些常用的相似度计算方法,用python进行实现以下。如果是初学者,我认为把公式先写下来,然后再写代码去实现比较好。
欧几里德距离
几个数据集之间的相似度一般是基于每对对象间的距离计算。最常用的当然是欧几里德距离,其公式为:
#-*-coding:utf-8 -*-
#计算欧几里德距离:
def euclidean(p,q):
#如果两数据集数目不同,计算两者之间都对应有的数
same = 0
for i in p:
if i in q:
same +=1
#计算欧几里德距离,并将其标准化
e = sum([(p[i] - q[i])**2 for i in range(same)])
return 1/(1+e**.5)
我们用数据集可以去算一下:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print euclidean(p,q)
得出结果是:0.261203874964
皮尔逊相关度
几个数据集中出现异常值的时候,欧几里德距离就不如皮尔逊相关度‘稳定’,它会在出现偏差时倾向于给出更好的结果。其公式为:
-*-coding:utf-8 -*-
#计算皮尔逊相关度:
def pearson(p,q):
#只计算两者共同有的
same = 0
for i in p:
if i in q:
same +=1
n = same
#分别求p,q的和
sumx = sum([p[i] for i in range(n)])
sumy = sum([q[i] for i in range(n)])
#分别求出p,q的平方和
sumxsq = sum([p[i]**2 for i in range(n)])
sumysq = sum([q[i]**2 for i in range(n)])
#求出p,q的乘积和
sumxy = sum([p[i]*q[i] for i in range(n)])
# print sumxy
#求出pearson相关系数
up = sumxy - sumx*sumy/n
down = ((sumxsq - pow(sumxsq,2)/n)*(sumysq - pow(sumysq,2)/n))**.5
#若down为零则不能计算,return 0
if down == 0 :return 0
r = up/down
return r
用同样的数据集去计算:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print pearson(p,q)
得出结果是:0.00595238095238
曼哈顿距离
曼哈顿距离是另一种相似度计算方法,不是经常需要,但是我们仍然学会如何用python去实现,其公式为:
#-*-coding:utf-8 -*-
#计算曼哈顿距离:
def manhattan(p,q):
#只计算两者共同有的
same = 0
for i in p:
if i in q:
same += 1
#计算曼哈顿距离
n = same
vals = range(n)
distance = sum(abs(p[i] - q[i]) for i in vals)
return distance
用以上的数据集去计算:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print manhattan(p,q)
得出结果为4
Jaccard系数
当数据集为二元变量时,我们只有两种状态:0或者1。这个时候以上的计算相似度的方法就无法派上用场,于是我们引出Jaccard系数,这是一个能够表示两个数据集都是二元变量(也可以多元)的相似度的指标,其公式为:
#-*-coding:utf-8 -*-
# 计算jaccard系数
def jaccard(p,q):
c = [a for i in p if v in b]
return float(len(c))/(len(a)+len(b)-len(b))
#注意:在使用之前必须对两个数据集进行去重
我们用一些特殊的数据集去测试一下:
p = ['shirt','shoes','pants','socks']
q = ['shirt','shoes']
print jaccard(p,q)
得出结果是:0.5
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11