京公网安备 11010802034615号
经营许可证编号:京B2-20210330
收藏 | 机器学习、NLP、Python和Math最好的150余个教程
尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展。最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整理了一份迄今为止我发现的最好的教程内容列表。
通过教程中的简介内容讲述一个概念。避免了包括书籍章节涵盖范围广,以及研究论文在教学理念上做的不好的特点。
我把这篇文章分成四个部分:机器学习、NLP、Python和数学。
每个部分中都包含了一些主题文章,但是由于材料巨大,每个部分不可能包含所有可能的主题,我将每个主题限制在5到6个教程中。(由于微信不能插入外链,请点击“阅读原文”查看原文)
机器学习
Machine Learning is Fun! (medium.com/@ageitgey)
Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)
An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)
A Gentle Guide to Machine Learning (monkeylearn.com)
Which machine learning algorithm should I use? (sas.com)
激活和损失函数
Sigmoid neurons (neuralnetworksanddeeplearning.com)
What is the role of the activation function in a neural network? (quora.com)
Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange.com)
Activation functions and it’s types-Which is better? (medium.com)
Making Sense of Logarithmic Loss (exegetic.biz)
Loss Functions (Stanford CS231n)
L1 vs. L2 Loss function (rishy.github.io)
The cross-entropy cost function (neuralnetworksanddeeplearning.com)
Bias
Role of Bias in Neural Networks (stackoverflow.com)
Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)
What is bias in artificial neural network? (quora.com)
感知器
Perceptrons (neuralnetworksanddeeplearning.com)
The Perception (natureofcode.com)
Single-layer Neural Networks (Perceptrons) (dcu.ie)
From Perceptrons to Deep Networks (toptal.com)
回归
Introduction to linear regression analysis (duke.edu)
Linear Regression (ufldl.stanford.edu)
Linear Regression (readthedocs.io)
Logistic Regression (readthedocs.io)
Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery.com)
Logistic Regression Tutorial for Machine Learning(machinelearningmastery.com)
Softmax Regression (ufldl.stanford.edu)
梯度下降算法
Learning with gradient descent (neuralnetworksanddeeplearning.com)
Gradient Descent (iamtrask.github.io)
How to understand Gradient Descent algorithm (kdnuggets.com)
An overview of gradient descent optimization algorithms(sebastianruder.com)
Optimization: Stochastic Gradient Descent (Stanford CS231n)
生成式学习
Generative Learning Algorithms (Stanford CS229)
A practical explanation of a Naive Bayes classifier (monkeylearn.com)
支持向量机
An introduction to Support Vector Machines (SVM) (monkeylearn.com)
Support Vector Machines (Stanford CS229)
Linear classification: Support Vector Machine, Softmax (Stanford 231n)
反向传播
Yes you should understand backprop (medium.com/@karpathy)
Can you give a visual explanation for the back propagation algorithm for neural - networks? (github.com/rasbt)
How the backpropagation algorithm works(neuralnetworksanddeeplearning.com)
Backpropagation Through Time and Vanishing Gradients (wildml.com)
A Gentle Introduction to Backpropagation Through Time(machinelearningmastery.com)
Backpropagation, Intuitions (Stanford CS231n)
深度学习
Deep Learning in a Nutshell (nikhilbuduma.com)
A Tutorial on Deep Learning (Quoc V. Le)
What is Deep Learning? (machinelearningmastery.com)
What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep - Learning? (nvidia.com)
优化和降维
Seven Techniques for Data Dimensionality Reduction (knime.org)
Principal components analysis (Stanford CS229)
Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)
How to train your Deep Neural Network (rishy.github.io)
长短期记忆网络
A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery.com)
Understanding LSTM Networks (colah.github.io)
Exploring LSTMs (echen.me)
Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)
卷积神经网络
Introducing convolutional networks (neuralnetworksanddeeplearning.com)
Deep Learning and Convolutional Neural Networks(medium.com/@ageitgey)
Conv Nets: A Modular Perspective (colah.github.io)
Understanding Convolutions (colah.github.io)
递归神经网络
Recurrent Neural Networks Tutorial (wildml.com)
Attention and Augmented Recurrent Neural Networks (distill.pub)
The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io)
A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)
强化学习
Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya.com)
A Tutorial for Reinforcement Learning (mst.edu)
Learning Reinforcement Learning (wildml.com)
Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)
生成对抗网络
What’s a Generative Adversarial Network? (nvidia.com)
Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium.com/@ageitgey)
An introduction to Generative Adversarial Networks (with code in - TensorFlow) (aylien.com)
Generative Adversarial Networks for Beginners (oreilly.com)
多任务学习
An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder.com)
自然语言处理
A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)
The Definitive Guide to Natural Language Processing (monkeylearn.com)
Introduction to Natural Language Processing (algorithmia.com)
Natural Language Processing Tutorial (vikparuchuri.com)
Natural Language Processing (almost) from Scratch (arxiv.org)
深入学习和NLP
Deep Learning applied to NLP (arxiv.org)
Deep Learning for NLP (without Magic) (Richard Socher)
Understanding Convolutional Neural Networks for NLP (wildml.com)
Deep Learning, NLP, and Representations (colah.github.io)
Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)
Understanding Natural Language with Deep Neural Networks Using Torch(nvidia.com)
Deep Learning for NLP with Pytorch (pytorich.org)
词向量
Bag of Words Meets Bags of Popcorn (kaggle.com)
On word embeddings Part I, Part II, Part III (sebastianruder.com)
The amazing power of word vectors (acolyer.org)
word2vec Parameter Learning Explained (arxiv.org)
Word2Vec Tutorial — The Skip-Gram Model, Negative Sampling(mccormickml.com)
Encoder-Decoder
Attention and Memory in Deep Learning and NLP (wildml.com)
Sequence to Sequence Models (tensorflow.org)
Sequence to Sequence Learning with Neural Networks (NIPS 2014)
Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)
How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers(machinelearningmastery.com)
tf-seq2seq (google.github.io)
Python
7 Steps to Mastering Machine Learning With Python (kdnuggets.com)
An example machine learning notebook (nbviewer.jupyter.org)
例子
How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery.com)
Implementing a Neural Network from Scratch in Python (wildml.com)
A Neural Network in 11 lines of Python (iamtrask.github.io)
Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets.com)
Demonstration of Memory with a Long Short-Term Memory Network in - Python (machinelearningmastery.com)
How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (machinelearningmastery.com)
How to Learn to Add Numbers with seq2seq Recurrent Neural Networks(machinelearningmastery.com)
Scipy和numpy
Scipy Lecture Notes (scipy-lectures.org)
Python Numpy Tutorial (Stanford CS231n)
An introduction to Numpy and Scipy (UCSB CHE210D)
A Crash Course in Python for Scientists (nbviewer.jupyter.org)
scikit-learn
PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)
scikit-learn Classification Algorithms (github.com/mmmayo13)
scikit-learn Tutorials (scikit-learn.org)
Abridged scikit-learn Tutorials (github.com/mmmayo13)
Tensorflow
Tensorflow Tutorials (tensorflow.org)
Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm)
TensorFlow: A primer (metaflow.fr)
RNNs in Tensorflow (wildml.com)
Implementing a CNN for Text Classification in TensorFlow (wildml.com)
How to Run Text Summarization with TensorFlow (surmenok.com)
PyTorch
PyTorch Tutorials (pytorch.org)
A Gentle Intro to PyTorch (gaurav.im)
Tutorial: Deep Learning in PyTorch (iamtrask.github.io)
PyTorch Examples (github.com/jcjohnson)
PyTorch Tutorial (github.com/MorvanZhou)
PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)
数学
Math for Machine Learning (ucsc.edu)
Math for Machine Learning (UMIACS CMSC422)
线性代数
An Intuitive Guide to Linear Algebra (betterexplained.com)
A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)
Understanding the Cross Product (betterexplained.com)
Understanding the Dot Product (betterexplained.com)
Linear Algebra for Machine Learning (U. of Buffalo CSE574)
Linear algebra cheat sheet for deep learning (medium.com)
Linear Algebra Review and Reference (Stanford CS229)
概率
Understanding Bayes Theorem With Ratios (betterexplained.com)
Review of Probability Theory (Stanford CS229)
Probability Theory Review for Machine Learning (Stanford CS229)
Probability Theory (U. of Buffalo CSE574)
Probability Theory for Machine Learning (U. of Toronto CSC411)
微积分
How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)
How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained.com)
Vector Calculus: Understanding the Gradient (betterexplained.com)
Differential Calculus (Stanford CS224n)
Calculus Overview (readthedocs.io)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12