京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用R语言如何判别和分类
判别分析(discriminant analysis)是一种分类技术。它通过一个已知类别的“训练样本”来建立判别准则,并通过预测变量来为未知类别的数据进行分类。
判别分析根据所采用的数据模型,可分为线性判别分析和非线性判别分析。根据判别准则可分为Fisher判别、Bayes判别和距离判别。其中最基本的Fisher判别方法也被称为线性判别方法。该方法的主要思想是将多维数据投影到某个方向上,投影的原则是将总体与总体尽可能的分开,然后再选择合适的判别规则将新的样本分类判别。Fisher判别会投影降维,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一组内的投影值所形成的组内离差尽可能小,而不同组间的投影值所形成的类间离差尽可能大。Bayes判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。距离判别思想是根据已知分类的数据计算各类别的重心,对未知分类的数据,计算它与各类重心的距离,与某个重心距离最近则归于该类。
1.线性判别
当不同类样本的协方差矩阵相同时,我们可以在R中使用MASS包的lda函数实现线性判别。值得注意的是当分类只有两种且总体服从多元正态分布条件下,Bayes判别与Fisher判别、距离判别是等价的。利用table函数建立混淆矩阵,比对真实类别和预测类别。
> library(MASS)
> data(iris)
> iris.lda=lda(Species~.,data=iris)
> table(Species,predict(iris.lda,iris)$class)
Species setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49
> table<-table(Species,predict(iris.lda,iris)$class)
> sum(diag(prop.table(table)))###判对率
[1] 0.98
2.二次判别
当不同类样本的协方差矩阵不同时,则应该使用二次判别。在使用lda和qda函数时注意:其假设是总体服从多元正态分布,若不满足的话则谨慎使用二次判别。
> iris.qda=qda(Species~.,data=iris,cv=T)
> table(Species,predict(iris.qda,iris)$class)
Species setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49
> table<-table(Species,predict(iris.qda,iris)$class)
> sum(diag(prop.table(table)))###判对率
[1] 0.98
3.贝叶斯判别
贝叶斯判别式假定对研究对象已有一定的认识 这种认识常用先验概率来描述,当取得样本后就可以用样本来修正已经有的先验概率分布得出后验概率分布,然后通过后验概率分布进行各种统计推。实际上就是使平均误判损失(误判概率与误判损失的结合)ECM达到极小的过程。
> library(MASS)
> data(iris)
> iris.Beyes=lda(Species~.,data=iris,prior=c(1,1,1)/3)
> table(Species,predict(iris.Beyes,iris)$class)
Species setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49
> table<-table(Species,predict(iris.Beyes,iris)$class)
> sum(diag(prop.table(table)))###判对率
[1] 0.98
上面是先验概率相等的情形,下面介绍先验概率不等的情形
> iris.Beyes1=lda(Species~.,data=iris,prior=c(7,8,15)/30)
> table(Species,predict(iris.Beyes1,iris)$class)
Species setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49
> table<-table(Species,predict(iris.Beyes1,iris)$class)
> sum(diag(prop.table(table)))###判对率
[1] 0.98
判别分析是半监督分类,就是判别函数求解的时候按照已知类别样本计算,但是对于未知类别样本应用判别函数时不做任何监督。;而决策树和神经网络等方法属于有监督分类,从分类准则建立,到准则的部署全程控制。训练神经网络和决策树是监督学习的最常见技术。这两种技术(神经网络和决策树)高度依赖于事先确定的分类系统给出的信息。对于神经网络来说,分类系统用于判断网络的错误,然后调整网络适应它;对于决策树,分类系统用来判断哪些属性提供了最多的信息,如此一来可以用它解决分类系统的问题。
下面就介绍几种有监督分类方法
4.利用决策树分类
决策树是以实例为基础的归纳学习算法。它从一组无次序、无规则的元组中推理出决策树表示形式的分类规则。 它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性值从该结点向下分支,叶结点是要学习划分的类。从根到叶结点的一条路径就对应着一条合取规则,整个决策树就对应着一组析取表达式规则。
> library(tree)
> set.seed(2)
> data(iris)
> train=sample(1:nrow(iris),100)
> iris.test=iris[-train,]
> tree.Species=tree(Species~.,iris,subset=train)
> tree.pred=predict(tree.Species,iris.test,type='class')
> table(tree.pred,iris.test$Species)
tree.pred setosa versicolor virginica
setosa 15 0 0
versicolor 0 16 0
virginica 0 1 18
> table<-table(tree.pred,iris.test$Species)
> sum(diag(prop.table(table)))###判对率
[1] 0.98
5.利用神经网络分类
神经网络建立在有自学习能力的数学模型基础上,可以对复杂的数据进行分析,并完成对人脑或其他计算机来说极为复杂的模式抽取及趋势分析。神经网络的典型应用是建立分类模型。神经网络从经验中学习,常用于发现一组输入数据和一个结果之间的未知联系神经网络的训练是根据历史样本数据反复进行的。训练过程中,处理单元对数据进行汇总和转换,它们之间的连接被赋以不同的权值。也就是说,为了对每一个样本的结果变量进行预测,一个网络要尝试各种不同的方案。当输出结果在指定的精度级别上与已知结果吻合,或满足其它的结束准则时,网络的训练就不再进行
> library(nnet)
> set.seed(2)
> data(iris)
> iris.nnet <-nnet(Species ~ ., linout = F,size = 10, decay = 0.01, maxit = 1000,trace = F,data = iris)
#对分类数据预测需要加上type参数
> pre.forest=predict(iris.nnet, iris,type='class')
> table(pre.forest,iris$Species)
pre.forest setosa versicolor virginica
setosa 50 0 0
versicolor 0 49 0
virginica 0 1 50
> table<-table(pre.forest,iris$Species)
> sum(diag(prop.table(table)))###判对率
[1] 0.9933333
6.利用支持向量机分类、
SVM学习问题可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。而其他分类方法(如基于规则的分类器和人工神经网络)都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解。 SVM通过最大化决策边界的边缘来控制模型的能力。尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等。通过对数据中每个分类属性引入一个哑变量,SVM可以应用于分类数据。SVM一般只能用在二类问题,对于多类问题效果不好。
> library(e1071)
> set.seed(2)
> data(iris)
> iris.svm <-svm(Species ~ .,data = iris)
> pre.forest=predict(iris.svm, iris,type='class')
> table(pre.forest,iris$Species)
pre.forest setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 2 48
> table<-table(pre.forest,iris$Species)
> sum(diag(prop.table(table)))###判对率
[1] 0.9733333
7.基于距离的分类算法
K—最临近方法(k Nearest Neighbors,简称KNN)是实际运用中经常被采用的一种基于距离的分类算法。KNN算法的基本思想:假定每个类包含多个训练数据,且每个训练数据都有一个唯一的类别标记,计算每个训练数据到待分类元组的距离,取和待分类元组距离最近的k个训练数据,k个数据中哪个类别的训练数据占多数,则待分类元组就属于哪个类别。工作原理:我们知道样本集中每一个数据与所属分类的对应关系,输入没有标签的新数据后,将新数据与训练集的数据对应特征进行比较,找出“距离”最近的k(通常k<20)数据,选择这k个数据中出现最多的分类作为新数据的分类。
> library(kknn)
> data(iris)
> m <- dim(iris)[1]
> val <- sample(1:m, size =round(m/3), replace = FALSE, prob= rep(1/m, m)) ##随机选出训练集合
> iris.train <- iris[-val,]
> iris.test <- iris[val,]
> iris.kknn <- kknn(Species~.,iris.train, iris.test, distance = 5, kernel= "triangular")
> fit <- fitted(iris.kknn)
> table(iris.test$Species, fit)
fit
setosa versicolor virginica
setosa 15 0 0
versicolor 0 15 1
virginica 0 2 17
> table<-table(iris.test$Species, fit)
> sum(diag(prop.table(table)))
[1] 0.94
8.利用logistic回归分类
logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于他们的因变量不同,其他的基本都差不多,正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalized linear model)。这一家族中的模型形式基本上都差不多,不同的就是因变量不同,如果是连续的,就是多重线性回归,如果是二项分布,就是logistic回归。logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。
> library(nnet)
> data(iris)
> set.seed(2)
> train=sample(1:nrow(iris),100)
> iris.train=iris[train,]
> iris.test=iris[-train,]
> iris.logistic<- multinom(Species~., data = iris.train)
# weights: 18 (10 variable)
initial value 109.861229
iter 10 value 15.748434
iter 20 value 3.075288
iter 30 value 1.783451
iter 40 value 1.757924
iter 50 value 1.745571
iter 60 value 1.726390
iter 70 value 1.601147
iter 80 value 1.578286
iter 90 value 1.553331
iter 100 value 1.540946
final value 1.540946
stopped after 100 iterations
> summary(iris.logistic)
Call:
multinom(formula = Species ~ ., data = iris.train)
Coefficients:
(Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width
versicolor 72.06357 -8.35714 -25.59577 23.57554 -18.06928
virginica -75.84817 -15.20983 -49.04539 50.74856 53.25676
Std. Errors:
(Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width
versicolor 92.54313 54.78403 108.3836 211.6267 133.9626
virginica 106.83040 57.99244 114.7649 217.0620 148.1710
Residual Deviance: 3.081893
AIC: 23.08189
> iris.pre<-predict(iris.logistic,iris.test,type="class")
> table(iris.pre,iris.test$Species)
iris.pre setosa versicolor virginica
setosa 14 0 0
versicolor 1 17 2
virginica 0 0 16
> table<-table(iris.pre,iris.test$Species)
> sum(diag(prop.table(table)))
[1] 0.94
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27