
r语言做决策树代码实现
0.节点和结点的区别:节点为两线相交,不为终点;而结点为两线相交为终点,没有延伸;
1.分支节点:它指向其他的节点,所以是度不为0的节点。 vs 叶子结点:度为0的结点
2.度:结点拥有的子树数;就是说这个结点下面有几条分支
3.树的深度:树有几层
4.10折交叉验证:常用的测试算法准确性的方法。
将数据集分成10份,轮流将其中9份作为训练数据,1份作为测试数据,进行试验
每次试验都会得出相应的正确率,10次结果的正确率取平均值就作为算法精度的估计,一般还需进行多次10折交叉验证,再求均值
为什么取10折?因为很多理论证明了10折是获得最好误差估计的恰当选择。
#第1步:工作目录和数据集的准备
setwd("C:/Users/IBM/Desktop/170222分类树建模/2.23建模")#设定当前的工作目录,重要!
audit2<-read.csv("model2.csv",header=T)
str(audit2) #转成字符串类型的
#第2步:做训练集和测试集
set.seed(1)
sub<-sample(1:nrow(audit2),round(nrow(audit2)*2/3))
length(sub)
data_train<-audit2[sub,]#取2/3的数据做训练集
data_test<-audit2[-sub,]#取1/3的数据做测试集
dim(data_train)#训练集行数和列数13542 23
dim(data_test) #测试集的行数和列数6771 23
table(data_train$是否转化) #看该列分布的
table(data_test$是否转化)
#做决策树模型。首先对树参数进行设置,再建模
## rpart.control对树进行一些设置
## xval是10折交叉验证
## minsplit是最小分支节点数,这里指大于等于20,那么该节点会继续分划下去,否则停止
## minbucket:叶子节点最小样本数,这里设置100,可以调参
## maxdepth:树的深度
## cp全称为complexity parameter,指某个点的复杂度,对每一步拆分,模型的拟合优度必须提高的程度
#加载程序包和一些参数设定
library(rpart)
ct<-rpart.control(xval=10,minsplit=20,minbucket=150,cp=0.00017)
#rapart包中的raprt函数来做决策树
#na.action:缺失数据的处理,默认为删因变量缺失保留自变量缺失
#method:树的末端数据类型选择相应的变量分割方法:
# 连续性method=“anova”,离散型method=“class”,计数型method=“poisson”,生存分析型method=“exp”
#parms:用来设置三个参数:先验概率、损失矩阵、分类纯度的度量方法(gini和information)
#第3步:建模,观察模型结果
library(rpart)
tree.both<-rpart(as.factor(是否转化)~ .,data=data_train,method='class',minsplit=20,minbucket=150,cp=0.00017)
summary(tree.both)
tree.both$variable.importance
printcp(tree.both)
plotcp(tree.both,lwd=2)
#第4步:画决策树
#画决策树第1种方法,画出来的树比较简单
par(mfrow=c(1,3))
plot(tree.both)
text(tree.both,use.n=T,all=T,cex=0.9)
#画决策树第2种方法,画出来的树稍微好看些
library(rpart.plot)
rpart.plot(tree.both,branch=1,shadow.col="gray",box.col="green",border.col="blue",split.col="red",split.cex=1.2,main="决策树")
#第5步:剪枝
#rpart包提供了一种剪枝方法--复杂度损失修剪的修剪方法
#printcp这个函数会告诉你分裂到的每一层,对应的cp是多少,平均相对误差是多少
#xerror:交叉验证的估计误差;xstd:标准误差;xerror±xstd平均相对误差
printcp(tree.both)
#我们使用具有最小交叉验证误差的cp
cp=tree.both$cptable[which.min(tree.both$cptable[,"xerror"]),"CP"]
cp #cp=0.00049
#第6步:剪枝之后的树再画图
tree.both2<-prune(tree.both,cp=tree.both$cptable[which.min(tree.both$cptable[,"xerror"]),"CP"])
summary(tree.both2)
tree.both2$variable.importance
printcp(tree.both2)
plotcp(tree.both2,lwd=2)
library(rpart.plot)
rpart.plot(tree.both2,branch=1,shadow.col="gray",box.col="green",border.col="blue",split.col="red",split.cex=1.2,main="决策树")
#第7步:输出规则。剪枝后的决策树规则,从规则中再发现规律
library(rattle)
asRules(tree.both2)
#第8步:在测试集上做预测
library(pROC)
pred.tree.both<-predict(tree.both,newdata=data_test)
#第9步,看测试的效果,预测正确的有多少,预测错误的有多少
predictScore<-data.frame(pred.tree.both)
rownames(predictScore) #看这个矩阵行的名字
colnames(predictScore)#看这个矩阵列的名字
predictScore$是否转化<-'ok' #在预测的矩阵后面多加一列‘是否转化’2,全部都是2
predictScore[predictScore$FALSE.>predictScore$TRUE.,][,"是否转化"]=FALSE #如果false的概率大于true的概率,那么判断为false
predictScore[predictScore$FALSE.<=predictScore$TRUE.,][,"是否转化"]=TRUE
n<-table(data_test$是否转化,predictScore$是否转化)
n #看分布情况
percantage<-c(n[1,1]/sum(n[1,]),n[2,2]/sum(n[2,]))
percantage
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04