京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据中心技术的五个重要趋势
技术总在不断发展,所以我们总有新东西可以学习,对于数据中心技术也是一样。
当然,这也有不好的一面:虽然学习新东西对我们很有帮助,但是很多时候,我们需要学习的东西太多了。这也在某种程度导致我们要从各个方面不断的完善自己,否则就会感觉自己落伍了。大型企业中就发生过类似的情况,他们确实在不断利用新技术,但是从另一方面来看,他们购买的软硬件也许只用一年左右就过时了,然后就需要更换。
企业的数据中心也面临着相同的情况。作为网络或数据中心管理员,每天都会面对各种新技术,那么,他们应该具体关注哪些方面呢?
我建议管理员重点关注下面五个关键的数据中心技术。
1. 消费类硬件
过去,专用硬件是针对特定领域而设计的。比如路由器和交换机专门用于实现网络连接,微型计算机则专门用于计算,专用存储硬件则用于存储数据。而现在,情况已有所不同,运行各种关键数据中心服务的硬件慢慢变成了日常消费类硬件。这就意味着,同样是x86服务器(例如,Super Micro Computer公司的服务器),如果加载了相应的软件,它们就可能成为数据中心的计算、存储或网络平台。这种变革为企业提供了极大的灵活性、敏捷性和低成本。
2. 软件吞噬世界
Marc Andreesen在《华尔街日报》的一篇文章中预测,软件将最终引领下一轮数据中心技术的发展,主导这场变革的不是硬件。
这个预言逐渐得到了验证--不仅仅在消费类产品领域是这样,而且在有线网络和数据中心领域也是一样。在消费类产品领域,像iPad这一种设备就可以执行以前需要多种设备才能完成的任务。同样在有线网络领域,现在一台设备就可以执行各种网络功能,并且新功能的增加也非常简单,简单的就像在平板电脑上下载一个应用一样。最后,在数据中心领域,有许多消费类设备可以提供存储、网络和计算功能--每一种设备都可以轻松地扩展,从而满足不断变化的需求。同样,软件也支持通过编程来控制、自动化和编排数据中心。
3. 敏捷性与弹性
只要部署对应的软件,企业就可以同时实现敏捷性和弹性。敏捷性使得企业可以根据需要为他们的数据中心技术加速部署新的应用程序和IT服务。弹性则让企业可以在需要时扩展容量,在不需要时缩小容量。同时,混合云和软件即服务(SaaS)等方案可以稳定地连接外部资源,从而进一步增加敏捷性和弹性。
4. 聚合
数据中心内独立组件(计算、存储和网络)逐渐整合成为一个整体。这种聚合可能表现为计算与存储的整合、存储与网络的整合,甚至是这三方面的整合。聚合可能发生在前面提到的消费类硬件上,而且它是通过软件来实现的。此外,在发生聚合时,它越来越多地用到闪存及其底层功能。
5. 闪存
闪存已经在消费类领域证明了其价值,并被应用于数据中心。现在它又被应用于服务器,用于增强存储系统的旋转磁盘性能,或者完全替代磁盘。
全闪存阵列具有巨大的优势。因为它们没有任何移动部件,因此消耗的能源较少,读取数据的速度又高于常规存储设备。但是,它们还非常昂贵,而且写数据的速度又比机械设备慢。为此,企业可以使用混合阵列,其中利用闪存执行特定功能。在混合阵列中,软件的智能化可能会影响整体性能,因为它能够决定哪些数据应该存储到高速缓存,哪些不是。(我们都不希望备份大量的数据或快照,然后影响一些更重要的应用程序的性能。)
在某些情况下,企业会在服务器中直接使用闪存,把它作为服务器与存储之间的缓存层。添加闪存的最佳位置各不相同,具体取决于应用程序及所使用的存储系统。也就是说,无论在什么位置使用闪存,它都能提升数据中心的性能和可扩展性,特别它的价格在不断下降,而容量则不断地增加。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27