京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 运营商不能做“傻土豪”
大数据时代的到来,既带来巨大价值也带来严峻挑战,运营商也不例外,随着移动互联网时代的到来,三大运营商的传统业务和整体固网业务都已受到巨大冲击,增长呈现下滑趋势,电信运营商在大数据时代将面临来自技术和业务两个层面的挑战。
电信业近十年来的变革,尤其是今年来以来,随着4G技术的发展和移动互联网的普及,电信运营商的各种商业模式随之被打破。
尽管电信运营商一直积极优化4G网络、加强WLAN的部署,中国移动也已经开始力推LTE,但网络的持续扩容与升级并未给电信运营商带来更加可观的收入,三大运营商的传统业务和整体固网业务都受到了移动互联网的巨大冲击,增长趋缓甚至下滑。
随着移动互联网用户流量激增和4G业务的推广,移动网络数据业务和流量也在大幅增加。在大数据时代,电信运营商还面临着来自数据、管理方面的巨大挑战。海量的半结构化和非结构化的数据大大降低了数据处理的效率,给运营商带来了巨大的数据存储和读写压力。如若不能缩短数据处理的周期,很多数据的价值都会被极大地稀释。
大数据时代运营商的挑战与机会
大数据为运营商在技术和业务两个层面都带来挑战。从技术来讲,主要是数据的管理、采集、分析不足。数据量的增加使得运营商传统的处理数据和存储压力增大,数据类型的多样化使得传统数据处理窗口难以处理;在数据分析方面,运营商希望复合关联,希望快速实施,但事实上,现有的DPI的分析仅仅用了几张报表。数据散落在各种系统中无法进行有效的采集、分析。
此外,庞大的数据规模和复杂的数据种类也给运营商带来了管理层面的难题。对于电信运营商自身而言,每一个省、市公司都是相对独立的,仅一个省的单月计费清单数量就多达数十亿条,而大数据时代要求跨地域、跨业务的数据整合和分析,对运营商统一的数据整合和管理能力提出了非常高的要求。
谈及电信运营商在大数据时代的优势和机遇,通信记录着人们在现代社会的信息指纹,应结合自身的特殊数据来寻找潜在资源。电信运营商通过结合社会化数据,可以提高用户的体验;通过个人位置信息的分析、匹配,可以提供创新服务。数据的结合,在公共卫生、疾病防治、金融保险(放心保)等方面都会发挥作用。
运营商需自研大数据处理架构
大数据的价值需要通过云计算平台才能被充分发掘和体现。互联网大数据平台具备以下几个特点:
第一,规模大,数据集中存储和处理,无论是交易系统还是分析系统,数据规模均超过PB级。
第二,数据高可靠,系统高可用:数据采用多副本、纠删码、跨IDC等技术实现数据高可靠性。
第三,基于通用底层技术平台的高效定制化系统:采用通用的底层通用平台,针对应用特点定制大数据系统,获得更高性能。
资源共享:在多个应用之间共享存储和处理能力,利用率高达80%。
评论:
大数据蕴含巨大商业价值,运营商不能做“傻土豪”,坐拥金矿而不会开发利用是非常傻的事情,电信运营商拥有大数据,但是由于业务模式不同,大数据平台的研发和应用尚没有获得大规模发展,因此电信运营商需要开发适合自己的大数据处理架构,这样才能将大数据金矿价值开发出来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27