
大数据时代 运营商不能做“傻土豪”
大数据时代的到来,既带来巨大价值也带来严峻挑战,运营商也不例外,随着移动互联网时代的到来,三大运营商的传统业务和整体固网业务都已受到巨大冲击,增长呈现下滑趋势,电信运营商在大数据时代将面临来自技术和业务两个层面的挑战。
电信业近十年来的变革,尤其是今年来以来,随着4G技术的发展和移动互联网的普及,电信运营商的各种商业模式随之被打破。
尽管电信运营商一直积极优化4G网络、加强WLAN的部署,中国移动也已经开始力推LTE,但网络的持续扩容与升级并未给电信运营商带来更加可观的收入,三大运营商的传统业务和整体固网业务都受到了移动互联网的巨大冲击,增长趋缓甚至下滑。
随着移动互联网用户流量激增和4G业务的推广,移动网络数据业务和流量也在大幅增加。在大数据时代,电信运营商还面临着来自数据、管理方面的巨大挑战。海量的半结构化和非结构化的数据大大降低了数据处理的效率,给运营商带来了巨大的数据存储和读写压力。如若不能缩短数据处理的周期,很多数据的价值都会被极大地稀释。
大数据时代运营商的挑战与机会
大数据为运营商在技术和业务两个层面都带来挑战。从技术来讲,主要是数据的管理、采集、分析不足。数据量的增加使得运营商传统的处理数据和存储压力增大,数据类型的多样化使得传统数据处理窗口难以处理;在数据分析方面,运营商希望复合关联,希望快速实施,但事实上,现有的DPI的分析仅仅用了几张报表。数据散落在各种系统中无法进行有效的采集、分析。
此外,庞大的数据规模和复杂的数据种类也给运营商带来了管理层面的难题。对于电信运营商自身而言,每一个省、市公司都是相对独立的,仅一个省的单月计费清单数量就多达数十亿条,而大数据时代要求跨地域、跨业务的数据整合和分析,对运营商统一的数据整合和管理能力提出了非常高的要求。
谈及电信运营商在大数据时代的优势和机遇,通信记录着人们在现代社会的信息指纹,应结合自身的特殊数据来寻找潜在资源。电信运营商通过结合社会化数据,可以提高用户的体验;通过个人位置信息的分析、匹配,可以提供创新服务。数据的结合,在公共卫生、疾病防治、金融保险(放心保)等方面都会发挥作用。
运营商需自研大数据处理架构
大数据的价值需要通过云计算平台才能被充分发掘和体现。互联网大数据平台具备以下几个特点:
第一,规模大,数据集中存储和处理,无论是交易系统还是分析系统,数据规模均超过PB级。
第二,数据高可靠,系统高可用:数据采用多副本、纠删码、跨IDC等技术实现数据高可靠性。
第三,基于通用底层技术平台的高效定制化系统:采用通用的底层通用平台,针对应用特点定制大数据系统,获得更高性能。
资源共享:在多个应用之间共享存储和处理能力,利用率高达80%。
评论:
大数据蕴含巨大商业价值,运营商不能做“傻土豪”,坐拥金矿而不会开发利用是非常傻的事情,电信运营商拥有大数据,但是由于业务模式不同,大数据平台的研发和应用尚没有获得大规模发展,因此电信运营商需要开发适合自己的大数据处理架构,这样才能将大数据金矿价值开发出来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04