京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于CDA A+学位课程的问题,看这一篇就够了
A+的“+号”亦为“十字”,从IT到DT再到未来的智能时代,人才的进步也从“1”字型人才到“T”字型人才再进化到“十”字型人才。
所谓“1”字型人才是指具备某个领域的专业深度,但往往会一条路走到头,在其他领域没有竞争力。 而“T”字型人才是指同时具备专业深度和知识面的广度。这样的人才既能在自己的领域做到极致,也能解决其他领域的问题,但是缺乏的是创新思维和能力。“十”字型人才就是同时具有某个专业领域的深度,跨界行业的知识宽度,以及拔尖的创新力度。
「A+」,是一种追求确定性极致的精神。
「A+」,是极致的同时更具备复合型能力。
「A+」,是让艰辛的过程更具价值更加舒适。
CDA数据分析师人才教育品牌联合美库尔、GrowingIO及深谙数据界多年具备成熟项目经验的大牛名师联合打造的新型在线学习产品,推出「CDA A PLUS学位项目-数据分析师」!这门课将用充满活力的教学方式,通过充满互动的视频、企业实战项目和全程学习辅导,带你由浅入深地探索这个领域。
CDA A Plus数据分析主要学什么?戳链接了解详细课程大纲:「A+」优秀的产品很难表达,但...如你所见
CDA A+数据分析师学位课程,有试听吗?
别着急,新鲜出炉的授课老师之一——台湾铭传大学李御玺教授告诉您答案。
能不能利用碎片时间,充实自己?
A:CDA A PLUS学位项目【数据分析师】,第一期开课时间是2018年2月24日-7月22日,历时五个月、21周,每周都会更新学习内容。我们只需要你在规定时间完成规定的项目,在这个时间段内如何分配你的时间,由你决定。但为了保证学习效果,我们强烈建议你多挤出一些时间,保证每周10个小时学习本课程。
学什么内容,可以学有所用?
A:CDA A PLUS学位项目【数据分析师】由CDA数据分析师人才教育品牌联合美库尔、GrowingIO及深谙数据界多年具备成熟项目经验的大牛名师联合打造的新型在线学习产品。旨在打造DT时代“十字型”数据精英。本课程在【垂直的专业深度】上遵循经典的“CDA Level”标准大纲,从数据库到统计概率到数据分析与挖掘垂直深入,扎实专业技能功底。在【横向知识宽度】上加入行业跨界知识与来自零售电商、互联网、金融等领域的应用场景模块,如“客户关系管理”、“增长黑客”、“风险控制”等,引入更多的业务场景和案例。在【纵上创新力度】上突破传统思维的局限,加入逻辑思维、量化思维、概率思维、系统思维等“决策黑客”内容,并在每一模块课程后加入实际项目演练,创新落地。
有没有办法,事半功倍?
A:CDA A PLUS学位项目【数据分析师】在提供优质课程内容同时,在每一模块课程后提供数据和实战项目,并提供在线练习功能和项目指导服务,助教、导师对你的课程进行代码审阅、项目审核,在老师指导下完成实战项目,增加项目经验。为每一位立志于在数据科学领域有所建树的学员提供完美、贴心的在线学习解决方案。
怎么养成习惯,坚持学习?
A:CDA A PLUS学位项目【数据分析师】第一期课程时长为5个月,要求大家在五个月内完成毕业项目,获取毕业证书。在五个月内,每周都会有作业,班主任会全程跟踪每位学员的学习状态,定期督促学员跟上课程进度,绝大部分学生都能够在5个月内完成课程。针对不能如期毕业的学员,我们将课程有效期延长为一年,如在一年内完成毕业项目也可获得毕业证书,顺利毕业的学员可以永久观看课程视频。如在一年内没有完成毕业项目,将取消课程学习权限。
能不能花最少的钱,学到这么好的内容?
A:CDA A PLUS学位项目【数据分析师】第一期开放200个名额,如果您是新学员,¥98元 获取席位预定券,锁定席位。预定后在1月15日前全款报名,预定券可抵500元。若未报名,视为放弃席位,定金不予退还。
如果您是我们的老学员或者持证人,¥98元 获取席位预定券,锁定席位,预定后在开课前全款报名,预定券可抵800元。若未报名,视为放弃席位,定金不予退还。
此外,我们为了push大家顺利完成学业,首次设立了奖学金计划,总奖金10000元,成绩=阶段性考试成绩60%+期末考试成绩40%;成绩第一名获得5000元奖学金,第二名3000元,第三名2000元。
此此外,针对在校生群体,我们推出了优益生计划。
各位热爱学习的在读学生群体(硕士及以下学位),如果您对数据分析感兴趣,致力于毕业后从事这方面的工作,欢迎戳文章底部的“阅读原文”,在线申请我们的优益生计划。截止时间2018年1月30日23:59。
能不能结实一帮好友,丰富学习模式?
A:CDA A PLUS学位项目【数据分析师】是在线学习课程,学员之间没有深入沟通机制。为了打破「学习孤岛」,在课程开始后,会对学生进行分组(自愿组队),将能力较强的学员设为组长,相互督促共同完成实战项目。在学员掌握一定技能后,会协助小组参加数据分析竞赛,丰富学习模式。
还有疑问?来看看业界大咖如何评价?「A+」这样的内容,业界大咖如何评价?
如果你是学生,想不想用一个学期,学点有用的?
如果你是在职,想不想用半年时间,学点加薪的?
扫码加群,了解CDA A +学位详情:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11