
哑变量在SPSS和SAS进行回归分析应用
虚拟变量(Dummy Variable),又称虚设变量、名义变量或哑变量,是量化了的质变量,通常取值为0或1。引入哑变量可使线形回归模型变得更复杂,但对问题描述更简明。
名义变量引入回归分析,必须进行数量化。如,职业有工人、农民、教师,分别赋值0,1,2。但是0,1,2代表的实际意义又不是由小到大的关系。所以这在回归分析中直接使用是错误的。如考虑季节因素时,用1,2,3,4编码也是不合理的,通常也进行哑变量化。
对于有序变量,如轻、中、重,则要酌情考虑。如果样本量足够打的话,也进行哑变量化,这样可以得到不同级别的差异。但是如果样本量不够大是,哑变量化造成变量数目上升,使回归结果变得不可靠,只能适得其反。
哑变量设置的原则
在模型中引入多个哑变量时,哑变量的个数应按下列原则确定:
如果有m种互斥的属性类型,在模型中引入(m-1)个哑变量。
例如,文化程度分小学、初中、高中、大学、研究生5类,引用4个哑变量
回归分析
在spss中,logistics回归中,有专门的选项来处理需要哑变量化的变量,只需单击“Categorical..”进行设置即可。但是对于多元线性回归就没有那么幸运了。
用computer或recode设置一组哑变量。由于哑变量是一个整体变量,所以进行变量筛选时必须共同进退。因此,讲所有哑变量同一般变量一下直接进行筛选是不对的,会出现一部分变量进入一部分变量未进入的情形。解决的方法是:将同一因素下的哑变量进行归组,在纳入方法中选择了“ENTER”来确保这些哑变量同进同出,而其它连续型变量和二分类变量则归为另一组,纳入方法为STEPWISE。然后在没有纳入这组哑变量的情况下再做一次STEPWISE,再来比较是不是应该纳入这组哑变量。
在sas中,哑变量的设置需要另外写程序,但是在回归程序中,则比较简单。eg.因变量y,自变量x1,x2,哑变量组x31 x32 x33,
proc reg;
model y=x1 x2 {x31 x32 x33} /selection=stepwise;
run;
即,把哑变量组用{}括起来就可以了。
SPSS多元线性回归哑变量设置
在spss中,logistics回归中,有专门的选项来处理需要哑变量化的变量,只需单击“Categorical..”进行设置即可。但是对于多元线性回归就没有那么幸运了。
用compute或recode设置一组哑变量。比如学历有三个等级:高中及以下,本科,研究生及以上。设置两个哑变量:学历1,学历2。下面以compute为例说明如何定义哑变量。
利用compute对学历1,学历2进行计算。设置成学历为高中及以下时学历1=0,历为高中及以下时学历2=0;学历为本科时学历1=1,为本科时学历2=0;为研究生及以上时学历1=0,为研究生及以上时学历2=1。
举例如下:
在SPSS中将多分类变量设置为哑变量比较麻烦,其中的一种方法就是将该多分类变量转换成N-1列的哑变量,举例来说,原多分类变量有四个取值(A/B/C/D),这时需要设置三列哑变量,比如D2,D3,D4
用如果变量值是B,则D2=1,否则取0,如果是C,则用D3=1,否则取0,如果是D,则D4=1,否则取0
D2 D3 D4
1 0 0——》B
0 1 0——》C
1 0 0——》B
0 0 1——》D
0 0 0——》A
注意,4分类只能设置3个哑变量!
定义好所有的哑变量之后,接下来就可以进行多元线性回归的计算了。由于哑变量是一个整体变量,所以进行变量筛选时必须共同进退。因此,将所有哑变量同一般变量一下直接进行筛选是不对的,会出现一部分变量进入一部分变量未进入的情形。
解决的方法是:将同一因素下的哑变量进行归组(block),在纳入方法中选择了“ENTER”来确保这些哑变量同进同出,而其它因素的哑变量另一组(block),除哑变量之外,其余自变量归为一个block,纳入方法为STEPWISE。
结果的解读方面,只要哑变量有其中一个有统计学显著性,就应该把整个因素包含的哑变量纳入回归方程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27