
SPSS—描述性统计分析—频数分析
描述性统计量
分类
集中趋势分析——中心趋势的数值度量
反映一组数据向某一位置聚集的趋势,主要的统计量有均数(mean)、中位数(median)、众数(mode)、总和(sum)以及分位数。均数适用于正态分布和对称分布的数据,中位数适用于所有类型。
如果各个数据之间差异程度较小,用平均值就有很好的代表性;而如果数据之间的差异程度较大,特别是有个别的极端值的情况下,用中位数或众数有较好的代表性
离散趋势分析——变异的数值度量围绕中心波动的度量
反映一组数据背离分布中心值的特征。主要的统计量有标准差(Std.Deviation)、方差(Variance)、极差(range)、最大值(maximum)、最小值(minimum),标准差和方差适用于正态分布。
分布特征分析——主要统计量有偏度系数和峰度系数。
偏度系数(Skewness)
描述数据某变量取值分布的对称性。0为正态分布;大于0为正偏或右偏,长尾在右边;小于0为负偏或左偏,长尾在左边;
峰度系数(Kurtosis)
描述其变量所有取值分布形态的陡峭程度。0为正态分布,大于0为陡峭,小于0为平坦。
一般情况下,如果样本的偏度接近于0,而峰度接近于3,就可以判断总体的分布接近于正态分布
变量类型
创建图表时,变量的测量级别很重要。以下是对于测量级别的描述。可以在图表构建器中临时更改测量级别,方法是右键单击“变量”列表中的变量,然后选择选项。还可以在数据编辑器的“变量视图”中永久更改变量的测量级别。
分类
包含有限数量的不同值或类别(例如,性别或宗教)的数据。分类变量可以是字符串(字母数值)变量或使用数值代码表示类别的数值变量(例如,0 = male,1 = female)。这种数据也称为定性数据。分类变量既可以是名义变量,也可以是顺序变量
名义 (Nominal)
当变量值表示不具有内在等级的类别时,该变量可以作为名义变量;例如,雇员任职的公司部门。名义变量的示例包括地区、邮政编码和宗教信仰。
有序 (Ordinal)
当变量值表示带有某种内在等级的类别时,该变量可以作为有序变量;例如,从十分不满意到十分满意的服务满意度水平。有序变量的示例包括表示满意度或可信度的态度分数和优先选择评分。
定性数据的图形法
饼图
形图
帕雷托图
刻度
以区间或比率刻度度量的数据,其中数据值既表示值的顺序,也表示值之间的距离。例如,72,195 美元的薪金比 52,398 美元的薪金高,这两个值之间的距离是 19,797 美元。也称为定量或连续数据。
定量数据的图形法
点图
茎叶图
频数分析
菜单
Analyze -> Descriptive Statistics -> Frequencies
数据源
contacts.sav
注意:9 = “Don’t know 是缺失值
频率对话框
统计量
频数表
图表
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11