京公网安备 11010802034615号
经营许可证编号:京B2-20210330
客户分析推动大数据举措
下面小编就为大家带来一篇深入理解python中的浅拷贝和深拷贝。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。
在讲什么是深浅拷贝之前,我们先来看这样一个现象:
a = ['scolia', 123, [], ]
b = a[:]
b[2].append(666)
print a
print b
为什么我只对b进行修改,却影响到了a呢?看过我在之前的文章中就说过:序列中保存的都是内存的引用。
所以,当我们通过b去修改里面的空列表的时候,其实就是修改内存中的同一个对象,所以会影响到a。
a = ['scolia', 123, [], ]
b = a[:]
print id(a), id(a[0]), id(a[1]), id(a[2])
print id(b), id(b[0]), id(b[1]), id(b[2])

代码验证无误,所以虽然a和b是两个不同的对象,但是里面的引用都是一样的。这就是所谓新的对象,旧的内容。
但是,浅拷贝还不仅如此,看下面:
a = ['scolia', 123, [], ]
b = a[:]
b[1] = 666
print a
print b
这又是怎么回事呢?

看过我在python变量赋值说明的同学会知道:对于字符串、数字等不可变的数据类型,修改就相当于重新赋值。在这里就相当于刷新引用。

代码验证一下:
a = ['scolia', 123, [], ]
b = a[:]
b[1] = 666
print id(a), id(a[0]), id(a[1]), id(a[2])
print id(b), id(b[0]), id(b[1]), id(b[2])
看来是正确的。

上面讲的这些就是浅拷贝,总结起来,浅拷贝只是拷贝了一系列引用,当我们在拷贝出来的对象对可修改的数据类型进行修改的时候,并没有改变引用,所以会影响原对象。而对不可修改的对象进行修改的是,则是新建了对象,刷新了引用,所以和原对象的引用不同,结果也就不同。
创建浅拷贝的方法:
1.切片操作
2.使用list()工厂函数新建对象。( b = list(a) )
那么深拷贝不就是将里面引用的对象重新创建了一遍并生成了一个新的一系列引用。
基本上是这样的,但是对于字符串、数字等不可修改的对象来说,重新创建一份似乎有点浪费内存,反正你到时要修改的时候都是新建对象,刷新引用的。所以还用原来的引用也无所谓,还能达到节省内存的目的。

看下代码验证:
from copy import deepcopy
a = ['scolia', 123, [], ]
b = deepcopy(a)
b[1] = 666
print id(a), id(a[0]), id(a[1]), id(a[2])
print id(b), id(b[0]), id(b[1]), id(b[2])

验证正确。
深拷贝的创建:
1.正如代码示例用一样,只能通过内置的copy模块的deepcopy()方法创建。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12