
数据科学家图鉴:我们分析了LinkedIn 上一千位数据科学家的简历
在大数据和机器学习的时代,有一种职业脱颖而出——数据科学家。伴随着这个头衔的声望是许多想进入该领域人群的追求。
但是如何将数据科学梦想变为现实,成为一名数据科学家呢?
每个数据科学家都有自己的故事,这就意味着这个回答存在着各种各样的答案。但是单单一个例子的作用并不大,因此365 Data Science进行了一项研究,对LinkedIn上1001名数据科学家的个人简介进行了汇总和分析。
我们的目标很简单,“常见的”数据科学家是什么样?
方法
数据样本来自LinkedIn上1001名数据科学家的个人简介。由于数据有限,这里采用任意抽样的方法。同时根据数据按国家、公司进行相应分类。
根据地理分布,分成了四类:美国(40%),英国(30%),印度(15%),其他国家(15%)。其中约一半的样本均来自财富500强公司。
调查结果
根据数据样本,数据科学家中70%为男性,至少掌握一门外语,本科以上学历,其中27%为博士生,48%为硕士。
平均下来,获得数据科学家头衔大致需要4.5年。使用的数据科学工具无外乎是R语言或者Python。使用这两种编程语言的人群雇佣比例基本相同(各为53%),74%的人群至少使用其中的一种。
编程语言
除了R语言和Python,当然还有其他的语言工具,虽然前两者是主导的编程语言。第三名为SQL(40%)。不出意料,MATLAB、Java、C/C++的比重在下降。这一趋势同样反映在近几年的相关调查研究中。
不同国家的编程语言
但是这些情况在全世界都普遍吗?为了解答这个问题,我们需要对数据进行地域细分。
Python在美国和英国都位于第一;而在印度和其他国家,第一则是R语言。不过这两种语言的比重差异并不显著。Java在三大地区的比重都在下降(美国、英国、印度)。然而,数据样本中其他国家仍然依赖”较老”的语言:Java、C/C++。
然而值得注意的是,印度的数据科学家中C/C++占比高达23%,这也符合印度作为“IT技术外包”之国的名声。
工作经验
从应届毕业生到数据科学家大师,数据科学家成长之路十分有趣。其中一大部分人上一份工作就是数据科学家(36%)。
考虑到这些信息,成为数据科学家最常见的方法是:通过成为数据分析师(17%)以及学术教育(12%)。鉴于数据样本中27%的人有博士学位,可以说学术教育是数据科学家的主要途径。
将这些信息与前两份工作的数据进行比较,我们可以得出:实习生、IT和顾问是成为数据科学家的其他三大途径。
教育背景
事实上,数据科学家的教育背景中,没有一个专业占绝对主导地位。然而共同之处在于,大多数都与量化有关。
如果你的专业与编程、计算机科学,或者与数学和统计学相关,那么比起任何专业为数据科学的人群,你们进入数据科学领域的机会都是平等的。
研究显示,数据科学家中20%计算机科学专业,19%为统计学、数学相关专业,19%为经济学和社会科学专业。只有13%专业为数据科学和数据分析。很大程度可以解释,这只是最近才成为了独立的专业。同时还说明,机器学习专业属于数据科学大类,而不是计算机科学。
毕业院校
考虑到专业学位的不一致性,下面我们对数据科学家的毕业院校进行分析,探究当中的模式。数据样本中大学排名根据《泰晤士报高等教育》世界大学排名。
数据显示,当中28%的数据科学家毕业于世界前50名大学。有趣的是,相当一部分数据科学家(25%)并不来自排名中的1100所大学。
自我提升
根据分析,40%的数据科学家参加了在线课程。此外,每个人平均有3.33个相关资历证书。因此,成为数据科学家无疑要依靠自我提升。
虽然这些数据在分析初期没被严格计算在内,但40%是比较保守的估计。毕竟许多数据科学的专业人士并不会在简介中注明他们上过的专业课程。
结论
数据科学家图鉴并不一致,当中充满了数学、编程和不断创新。从当中得到的启发是:保持量化的心态,对自我提升的渴望,强烈的专注力这些是当代数据科学家事业成功的主要动力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08