京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家图鉴:我们分析了LinkedIn 上一千位数据科学家的简历
在大数据和机器学习的时代,有一种职业脱颖而出——数据科学家。伴随着这个头衔的声望是许多想进入该领域人群的追求。
但是如何将数据科学梦想变为现实,成为一名数据科学家呢?
每个数据科学家都有自己的故事,这就意味着这个回答存在着各种各样的答案。但是单单一个例子的作用并不大,因此365 Data Science进行了一项研究,对LinkedIn上1001名数据科学家的个人简介进行了汇总和分析。
我们的目标很简单,“常见的”数据科学家是什么样?
方法
数据样本来自LinkedIn上1001名数据科学家的个人简介。由于数据有限,这里采用任意抽样的方法。同时根据数据按国家、公司进行相应分类。
根据地理分布,分成了四类:美国(40%),英国(30%),印度(15%),其他国家(15%)。其中约一半的样本均来自财富500强公司。
调查结果
根据数据样本,数据科学家中70%为男性,至少掌握一门外语,本科以上学历,其中27%为博士生,48%为硕士。
平均下来,获得数据科学家头衔大致需要4.5年。使用的数据科学工具无外乎是R语言或者Python。使用这两种编程语言的人群雇佣比例基本相同(各为53%),74%的人群至少使用其中的一种。
编程语言
除了R语言和Python,当然还有其他的语言工具,虽然前两者是主导的编程语言。第三名为SQL(40%)。不出意料,MATLAB、Java、C/C++的比重在下降。这一趋势同样反映在近几年的相关调查研究中。
不同国家的编程语言
但是这些情况在全世界都普遍吗?为了解答这个问题,我们需要对数据进行地域细分。
Python在美国和英国都位于第一;而在印度和其他国家,第一则是R语言。不过这两种语言的比重差异并不显著。Java在三大地区的比重都在下降(美国、英国、印度)。然而,数据样本中其他国家仍然依赖”较老”的语言:Java、C/C++。
然而值得注意的是,印度的数据科学家中C/C++占比高达23%,这也符合印度作为“IT技术外包”之国的名声。
工作经验
从应届毕业生到数据科学家大师,数据科学家成长之路十分有趣。其中一大部分人上一份工作就是数据科学家(36%)。
考虑到这些信息,成为数据科学家最常见的方法是:通过成为数据分析师(17%)以及学术教育(12%)。鉴于数据样本中27%的人有博士学位,可以说学术教育是数据科学家的主要途径。
将这些信息与前两份工作的数据进行比较,我们可以得出:实习生、IT和顾问是成为数据科学家的其他三大途径。
教育背景
事实上,数据科学家的教育背景中,没有一个专业占绝对主导地位。然而共同之处在于,大多数都与量化有关。
如果你的专业与编程、计算机科学,或者与数学和统计学相关,那么比起任何专业为数据科学的人群,你们进入数据科学领域的机会都是平等的。
研究显示,数据科学家中20%计算机科学专业,19%为统计学、数学相关专业,19%为经济学和社会科学专业。只有13%专业为数据科学和数据分析。很大程度可以解释,这只是最近才成为了独立的专业。同时还说明,机器学习专业属于数据科学大类,而不是计算机科学。
毕业院校
考虑到专业学位的不一致性,下面我们对数据科学家的毕业院校进行分析,探究当中的模式。数据样本中大学排名根据《泰晤士报高等教育》世界大学排名。
数据显示,当中28%的数据科学家毕业于世界前50名大学。有趣的是,相当一部分数据科学家(25%)并不来自排名中的1100所大学。
自我提升
根据分析,40%的数据科学家参加了在线课程。此外,每个人平均有3.33个相关资历证书。因此,成为数据科学家无疑要依靠自我提升。
虽然这些数据在分析初期没被严格计算在内,但40%是比较保守的估计。毕竟许多数据科学的专业人士并不会在简介中注明他们上过的专业课程。
结论
数据科学家图鉴并不一致,当中充满了数学、编程和不断创新。从当中得到的启发是:保持量化的心态,对自我提升的渴望,强烈的专注力这些是当代数据科学家事业成功的主要动力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12