
大数据的赚钱之道与亏损陷阱
大数据无疑是时下炙手可热的流行词汇,随着大数据技术在各个行业当中的不断深入,我们可以看到已经有很多个人乃至企业开始利用大数据来赚钱了。
大数据无疑是时下炙手可热的流行词汇,随着大数据技术在各个行业当中的不断深入,我们可以看到已经有很多个人乃至企业开始利用大数据来赚钱了。然而被宣传包装后的大数据,人们只关注到了它多么能赚钱,却忽视了事物的两面性,过犹不及,大数据可能也会面临赔钱。
大数据的赚钱之道
对于大数据营销而言,业内有很多专家表示,只要企业对于用户数据的积累程度达到一定的数量级,就可以很轻松的分析出用户的使用习惯和购买爱好等很多信息,很多企业利用大数据甚至还做到了比用户自己还了解用户的需求。
近些年,精准营销这个词被无数的企业提及,但是真正做到的少之又少,反而是垃圾信息泛滥。究其原因,主要就是过去名义上的精准营销并不怎么精准,因为其缺少用户特征数据支撑及详细准确的分析。相对而言,现在的RTB广告等应用则向我们展示了比以前更好的精准性,而其背后靠的就是大数据支撑。
投用户所好对大数据营销来说非常重要,如果企业在产品的生产周期之前就能够很好的了解不同人群用户的需求,并且能够很准确的挖掘出产品的潜在用户,那么对于产品日后推向市场将会有很大帮助。比如国产影片《小时代》在预告片投放后,即从微博上通过大数据分析得知其电影的主要观众群为90后女性,因此后续的营销活动则主要针对这些人群展开。
在传统制造领域,大数据仍然可以提升预测能力。美国的梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
大数据的也可能让你赔钱
大数据绝对是项转折性的伟大技术成果。根据Gartner公司的调查,2013年中64%的受访企业表示已经购买或者正计划在大数据系统领域进行投资,而在这64%认同大数据思路的受访者中,只有不到8%已经实际部署了大数据技术方案。这样的结果实在很糟糕,不过造成项目失败的理由明显更加糟糕:大多数企业根本不知道自己在迈入大数据领域后应该做些什么。
大数据孤岛。大数据供应商总爱谈论“数据湖”或者“数据中枢”,但事实上很多企业建立起来的只能算是“数据水坑儿”,各个水坑儿之间存在着明显的边界——例如市场营销数据水坑儿与制造数据水坑儿等等。需要强调的是,只有尽量缓和不同部门之间的隔阂并将各方的数据流汇总起来,大数据才能真正发挥自身价值。
步子迈太大。大数据并不需要一笔巨大的预算,如果怀着巨大的投入将带来巨大回报的预期开始一个大数据项目,往往会产生问题。在正式开始前,明智的做法是,尝试用有限的投入,在小范围内测试这个技术是否确实能带来预期的收益。按这样的节奏,一个项目可以按部就班地随着收益逐步提高,而逐步扩大投入规模,确保收益始终大于投入。
盲目迷信大数据。大数据的支持者认为,大数据的强大在于每一个数据点都可以被捕捉到,只要分析大数据就能推导出惊人准确的结果,数据背后的原因已经不再重要。但是我们要知道,大数据的核心不在规模大,它蕴含的是计算和思维方式的转变。
不可否认,数据中心是目前技术更新最快的领域之一,也是发展最为迅速的领域,但它并不是万能的赚钱利器,根据自身需求运用得当,才能玩转大数据。数据中心只是信息技术发展过程的必然产物,通过改善数据中心运转效率,可以更好地为人们服务,要脚踏实地的去学习、部署各种数据中心新技术,要让数据中心真正地高效运转起来,为人服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23