京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据 价值何在(4)_数据分析师
在充分认识到大数据带来机遇的同时,也应该认识到大数据带来的可能性风险
肯尼思·丘基尔:大数据时代令隐私保护问题更加突出。大数据的价值在于存储后的再使用。不过,关键的一个问题是,收集、保存一切信息,与隐私保护政策是有冲突的。保存一切信息是必要的,但是在这么做之前,我们有必要问自己一个问题,即现行的隐私保护政策是不是妨碍了我们正在迈入的大数据世界。社会有必要就此进行大辩论,以便为大数据时代的隐私保护划定新的边界。
维克托·迈尔·舍恩伯格:大数据时代必然会导致人们更多的个人信息被搜集和捕捉,这势必会使很多人感到不舒服甚至不安。但是,对数据感觉到恐慌或者害怕只是一种“小数据时代”应有的情绪。在大数据时代,每个人身上能够被获取的数据点不再是百十个而是高达百万甚至上亿个,谁都根本不可能把某一个人身上的所有数据点全部掌握。所以在保护个人隐私的时候我们可能需要换一种思考方式。比如,我们的关注重点不应该是要不要提供出这些数据,而是如何使用这些数据。
实际上,大数据时代带来的挑战是如何利用大数据分析预测未来,而不是审视过去。比如,一些机构可能在数据分析的基础上做出预期评估,来拒绝一个人申请的抵押贷款,或者否决病患继续进行治疗的必要。在大数据分析的基础上,人们的个人意志和被公平对待的要求很可能被否定,这才是应该担心的地方。
对大数据进行集中管理会使其变得更容易查找,而且便于混合提取不同类别的数据。但是集中管理可能会造成严重的问题:一是可能沦为恐怖分子的袭击目标,二是会赋予管理机构过于集中的信息掌控权。
在我看来,在互联网全球化的时代,我们完全可以从不同的数据库中采集信息而不是一定要把它们集中在一起。
事实上,目前的世界大数据储存已经呈分散化的趋势,数据市场将会允许不同地域和不同条件下数据的储存,人们完全可以从各地的大数据库中提取不同的数据再进行协同整合。
吴辅世:任何事情都有其两面性。在充分认识大数据带来的机遇和利益的同时,我们也应该认识到大数据带来的可能性风险。大数据的数据量巨大、非结构性强、来源庞杂,当它超出我们控制范围时,不可预测的问题就将发生,这就对海量数据的分析及应用要求日益增强,对未来的预测能力和优化性前瞻洞察需求更高。
安晖:对大数据应用必须保持清醒认识,既不能迷信其分析结果,也不能因为其不完全准确而否定其重要作用。
一方面,由于各种原因,所分析处理的数据对象中不可避免地会包括各种错误数据、无用数据,加之作为大数据技术核心的数据分析、人工智能等技术尚未完全成熟,所以对计算机完成的大数据分析处理的结果,无法要求其完全准确。例如,谷歌通过分析亿万用户搜索内容能够比专业机构更快地预测流感暴发,但由于微博上无用信息的干扰,这种预测也曾多次出现不准确的情况。
另一方面,必须清楚定位的是,大数据作用与价值的重点在于能够引导和启发大数据应用者的创新思维,辅助决策。简单而言,若是处理一个问题,通常人能够想到一种方法,而大数据能够提供十种参考方法,哪怕其中只有三种可行,也将解决问题的思路拓展了三倍。
所以,客观认识和发挥大数据的作用,不夸大、不缩小,是准确认知和应用大数据的前提。
本文来自:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06