京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据价值何在(1)_数据分析师
《孙子兵法》说:“多算胜,少算不胜。”今天,决定能否“多算”的重要因素在于,掌握数据的多少以及对数据处理能力的高低。有了大数据对象、大数据处理与应用的技术,再与各类实际应用需求相结合,大数据将给经济社会发展带来巨大影响。
惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值
安晖:当前,全球的数据总量正呈指数增长,过去3年间产生的数据量超过以往总和。移动互联网、物联网等的迅速发展,使新数据源不断出现,GPS、传感器等数据持续、大量产生。而数据获取成本、存储成本和处理成本的下降,也推动了数据量的膨胀。
美国麦肯锡全球研究院2011年6月发布题为《大数据:下一个创新、竞争和生产力的前沿》的研究报告,指出“大数据时代已经到来”,数据正成为与物质资产和人力资本相提并论的重要生产要素,大数据的使用将成为未来提高竞争力的关键要素。美国政府于2012年3月宣布“大数据的研究和发展计划”,以提高对大数据的收集与分析能力,增强国家竞争力。
其实,不仅是美国,其他一些国家也都把大数据提升到国家战略层面,认为未来国家层面的竞争力将部分体现为一国拥有数据的规模及运用数据的能力。有学者把大数据形象地比喻为推动人类社会发展的“新石油”。
信息技术领域原先已经有“海量数据”、“大规模数据”等概念,但这些概念只着眼于数据规模本身,未能充分反映数据爆发背景下的数据处理与应用需求,而“大数据”这一新概念不仅指规模庞大的数据对象,也包含对这些数据对象的处理和应用活动,是数据对象、技术与应用三者的统一。
大数据技术是从各种各样类型的大数据中,快速获得有价值信息的技术,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。
大数据应用是对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。
大数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于数据的应用需求和应用水平进入新的阶段。
肯尼思·丘基尔:大数据一般是指一整套新的技术,分析社会中存在的比以往多得多的信息,通过这些新的分析工具,我们能从大量信息中发现一些有价值的东西。一些技术,如非线性或网络映射、机器学习等都是大数据分析的一个侧面。不管是在生物科学研究,还是在确定一个城市可能发生火灾的位置等公共政策问题上,大数据都在给世界带来变革,因为人类有史以来第一次可以真正地收集海量的信息。
吴辅世:“大数据”只是一个相对的概念。大数据可以是多种类海量数据,它挑战传统分析技术,正推动分析技术行业革新。这种革新始于企业需要处理这些数量庞大又变化迅速的数据,而旧的分析技术已无法满足需求。新数据分析技术和旧技术的不同之处在于:一方面,数据膨胀要求数据挖掘和统计分析技术性能的飞跃。另一方面,不同规模的企业如今都面临大数据时代带来的挑战,分析技术必须朝着平民化、易操作化方向发展:简单易懂、容易操作并且能为各类企业所用。SAS可视化分析解决方案就是一个很好的例子,即使使用者毫无数据分析专业背景,也能通过直观的图形界面轻松地进行数据分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27