
大数据下的用户行为分析
1. Consumer behaviour is the study of when,why,how
and where people do or don't buy a product。
用户行为一般指用户通过中间资源,购买、使用和评价某种产品的记录。同时辅以用户、资源、产品自身及环境的信息。
用户行为记录一般可以表示一组属性的集合:{属性1,属性2,...,属性N}
2. 用户行为分析主要是研究对象用户的行为。数据来源包括用户的日志信息、用户主体信息和外界环境信息。通过特定的工具对用户在互联网/移动互联网上的行为进行记录,记录的信息通常称为用户日志。
数据内容:
(1)网站日志:用户在访问某个目标网站时,网站记录的用户相关行为信息;
(2)搜索引擎日志:搜索引擎日志系统所记录的用户在搜索引擎上的相关行为信息;
(3)用户浏览日志:通过特定的工具和途径记录用户所记录的用户在该搜索引擎上的相关行为信息;
(4)用户主体数据:如用户群的年龄、受教育程度、兴趣爱好等;
(5)外界环境数据:如移动互联网流量、手机上网用户增长、自费套餐等;
数据特点:
(1)大数据量/海量数据,big data;
(2)实时分析/准实时分析、离线分析;
(3)由于用户日志包含大量用户个人信息,为避免涉及过多的用户隐私,日志工具通常对用户个人信息进行加密,不涉及具体用户行为的细节内容,保护用户隐私;
(4)日志信息通常含有较多的噪音,因此,基于个人行为信息分析得到的结论常常存在着很大的不可靠性。
3. 用户行为分析平台主要面临海量数据处理困难、分析模型算法复杂、建设和运营成本高昂等方面的技术难点和挑战。
海量数据处理困难:
(1)问题:面临TB甚至PB级的海量数据,传统关系数据库存储尚可,但对OLAP分析效仿低下;
(2)难点:如何可实现可扩展的数据存储、灵活快捷的数据访问?
(3)思路:利用Nosql数据库解决大数据存储,通过水平扩展读写负载提高访问性能;
分析模型算法复杂:
(1)问题:分析需要运用预警预测、聚类、协同过滤等数据挖掘算法,算法的编程复杂度和计算复杂度都非常大;
(2)难点:如何实现分析模型,并提供实时高速的复杂分析;
(3)思路:改造开源的数据挖掘模型库,并运用Hadoop等并行计算框架;
建设和运维成本高昂:
(1)问题:传统数据库和分析软件进行海量数据分析将导致天价的软件授权许可费用;外部数据分析服务同样价格昂贵,并且面临安全性和灵活性局限;
(2)难点:如何低成本高效率的建设和运维系统?
(3)思路:基于可靠的开源解决方案构建独立自主经济灵活的分析平台。
4. Hadoop是基于Google有关大数据的论文实现的开源项目,最初的框架由Doug
Cutting在2005年提出,目前是由Apache维护的开源项目。从最初到现在,Hadoop系统在7年中开发完成了一系列重要的子项目,已经形成了一个涵盖数据存储、管理和分析功能的较为完整的大数据生态系统,成为大数据存储与处理领域地位最重要、应用最广泛的开源框架。
核心组件:
(1)MapReduce:
· Hadoop的分析式并行处理框架;
· 实现对HDFS上海量数据的批量分析;
(2)HDFS:
· Hadoop的一个分布式文件系统;
· 高容错性,部署在低廉商业硬件;
· 提供高吞吐量,适合批量处理;
Hadoop是运行在大量通常计算单位上提供海量数据存储与并行计算的平台框架:
· 基于x86集群水平可扩展;
· 基于MapReduce的并行计算能力;
· 设计规模:PB级的数据量,数千台计算节点;
5. Hadoop的优势:
(1)高可靠性:
· 按位存储和处理数据的能力值得信赖;
(2)高扩展性:
· 可以管理数以千计的存储和计算节点;
(3)高性能:
· 实现数千计算节点的并行计算;
(4)高容错性:
· 自动备份和自动失败任务重起;
Hadoop的不足:
(1)性能可优化:
· 与硬件的理论性能存在差距,具有优化空间;
(2)可扩展性和可靠性:
· 受单一Namenode,单一Jobtracker的设计严重制约,存在明显的单点故障源;
· 单一的Namenode的内容容量和性能有限,使得Hadoop集群的节点数量被限制到2000个左右,能支持的文件系统被限制在10-50PB,最多支持的文件数量大约为1.5亿;
(3)欠缺各种企业特性:
· 企业的个性化需求、定制化开发和可靠的运营维护服务;
企业版Hadoop改进主要方向:
(1)消除单点故障制约;
(2)改进MapReduce;
(3)完善数据管理和数据源整合;
(4)镜像、快照等容灾能力;
(5)可靠的服务支持;
6.
数据挖掘算法的编程复杂度和计算复杂度都非常大,往往称为制约分析项目按期完成的瓶颈,精细化运营分析平台利用支持Hadoop并行计算框架的开源数据挖掘模型数据库Mahout,实现了数据挖掘算法的快速实施和高效表现。基于这些经验,未来我们将研究整合其他的开源算法库(如Weka和R等),以及商业算法库,以保证分析的精确性和性能。
利用Mahout的聚类和协同过滤算法库的实现价值评估分析和智能推荐引擎。
7. 用户行为分析平台建立了大量的分析主题,分析结果的呈现能力对平台的应用效能影响重大。利用研制管理决策支持系统的经验,我们可以提供灵活可制定的报表编制和数据展现方式,并建立了主动推送和移动跨平台访问结合的数据访问能力,提高分析材料的生成和呈现速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10