
机器学习和 AI 领域必须了解的工具
关于数据科学,工具可能并不是那么热门的话题。人们似乎更关注最新的聊天机器人技术以及深度学习框架。
但这显然是不合理的。为什么不花些时间,挑选合适的工具呢?毕竟好的工具能够让你事半功倍。在本文中介绍了机器学习和 AI 方面的优质工具。
应该使用哪种语言?
这是一个有争议的问题。存在很多不同的观点。我个人的观点可能不那么常见,我认为越多越好。你应该同时使用 R 语言和 Python。
为什么?R语言更擅长数据可视化,并且有大量的统计数据包。另一方面,Python可以帮助你将模型部署生产,并更好地与团队中其他开发人员合作。
基本的软件包
我们应该充分利用的优秀开源社区。首先让我们回顾一下数据科学工作的主要流程。
典型的机器学习工作流程
最重要的步骤是:数据获取、数据清洗、可视化、建模、沟通。这些过程都需要用到库。
针对数据清洗,R语言中有一个出色的包——dplyr。无可否认,它的语法有些奇怪。注意 %>% 与* nix中的(|)运算符的工作原理相同,前一个操作的输出成为下一个操作的输入。这样,只需几行代码,你就可以构建相当复杂且可读的数据清洗操作。
另一方面,Python中可以用到Pandas。这个库很大程度上借鉴了R语言,特别是数据框的概念(当中行是观测,列是特征)。这需要一定的学习过程,但在习惯了之后,你可以在数据处理中做很多事情(甚至可以直接写入数据库)。
针对数据可视化,R语言中有ggplot2和plotly。ggplot2 非常强大,但级别较低。同样它的语法很奇怪,你需要通过图形语法来进行理解。plotly是一个较新的库,具有 ggplot 的功能,只需要一行代码就能进行交互。
Python中进行可视化的基础包是 matplotlib。但它的语法有些奇怪,默认颜色也不那么理想,因此我建议你使用新的seaborn软件包。Python缺少对模型性能的可视化,这里可以使用 yellowbrick 解决。你可以使用它来创建漂亮的图表分类器进行评估,查看特征,甚至绘制文本模型。
使用 seaborn 对 iris 数据集进行绘制
API
使用R语言进行机器学习常常会遇到一个问题。几乎所有模型都有不同的API,除非你记住所有的内容,如果你只想测试不同算法,那么就需要打开好几个文档标签。这个缺陷可以用 caret 和 mlr 解决,后者较新。我推荐用mlr,因为它更结构化,维护也更积极。而且功能强大,具有分解数据、训练、预测和性能评估功能。
Python中相应的库是scikit-learn。这也是我最喜欢的库,同时 scikit-learn 也备受一些科技公司的青睐 。它有一致的API,超过150种算法(包括神经网络),出色的文档,主动维护和教程。
Python中的ROC/AUC图,使用yellowbrick
集成开发环境
对于R语言来说,RStudio 是一个非常棒的工具,而且没有其他的竞争工具。我们希望在Python中找到相应的工具,我筛选了十几个(Spyder,PyCharm,Rodeo,spacemacs,Visual Studio,Canopy等等),主要推荐当中的两个工具:Jupyter Lab和Atom + Hydrogen。
Jupyter Lab很棒。但它仍然继承了Jupyter Notebook 中存在的一些缺点,比如单元状态,安全性,以及最严重的VCS集成问题。出于这个原因,我建议使用Atom + Hydrogen。你可以用它完成各种数据科学任务,比如检查数据框和变量,绘图等。
Atom + Hydrogen
EDA 工具
为什么需要?在数据科学过程中,尤其是起步阶段,我们需要快速地探索数据。在进行可视化之前,我们需要探索,并通过最少的技术投入来实现。因此写一大堆 seaborn、ggplot 代码并不是最佳选择,你需要使用 GUI 界面。因为不涉及任何代码,业务人员也可以使用。有两个非常棒的跨平台工具,并且免费——Past和Orange。前者更侧重于统计分析,后者更侧重于建模。两者都可以做很棒的数据可视化,因此完全符合我们的目标。
用Orange你能够进行的操作
结语
通过对工具进行优化,你能够更高效地完成数据分析工作(但也不要以此为借口不去工作哦)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13