
R语言实现数据操作
1.选择与查看数据
#选定数据
>data(iris)
#查看数据,按列展开,观测数据类型
>str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#按列展开,进行数据统计观测
>summary(iris)
Sepal.Length Sepal.Width
Min. :4.300 Min. :2.000
1st Qu.:5.100 1st Qu.:2.800
Median :5.800 Median :3.000
Mean :5.843 Mean :3.057
3rd Qu.:6.400 3rd Qu.:3.300
Max. :7.900 Max. :4.400
Petal.Length Petal.Width
Min. :1.000 Min. :0.100
1st Qu.:1.600 1st Qu.:0.300
Median :4.350 Median :1.300
Mean :3.758 Mean :1.199
3rd Qu.:5.100 3rd Qu.:1.800
Max. :6.900 Max. :2.500
Species
setosa :50
versicolor:50
virginica :50
#按行展开,查看前10行
>head(iris,10) Sepal.Length Sepal.Width Petal.Length
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4
6 5.4 3.9 1.7
7 4.6 3.4 1.4
8 5.0 3.4 1.5
9 4.4 2.9 1.4
10 4.9 3.1 1.5
Petal.Width Species
1 0.2 setosa
2 0.2 setosa
3 0.2 setosa
4 0.2 setosa
5 0.2 setosa
6 0.4 setosa
7 0.3 setosa
8 0.2 setosa
9 0.2 setosa
10 0.1 setosa
#按行展开,观测后10行
>tail(iris,10)
Sepal.Length Sepal.Width Petal.Length
141 6.7 3.1 5.6
142 6.9 3.1 5.1
143 5.8 2.7 5.1
144 6.8 3.2 5.9
145 6.7 3.3 5.7
146 6.7 3.0 5.2
147 6.3 2.5 5.0
148 6.5 3.0 5.2
149 6.2 3.4 5.4
150 5.9 3.0 5.1
Petal.Width Species
141 2.4 virginica
142 2.3 virginica
143 1.9 virginica
144 2.3 virginica
145 2.5 virginica
146 2.3 virginica
147 1.9 virginica
148 2.0 virginica
149 2.3 virginica
150 1.8 virginica
#观测数据内的某一行 `
>table(iris$Sepal.Length)
4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2
1 3 1 4 2 5 6 10 9 4
5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2
1 6 7 6 8 7 3 6 6 4
6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2
9 7 5 2 8 3 4 1 1 3
7.3 7.4 7.6 7.7 7.9
1 1 1 4 1
#观测数据的容量
> object.size(iris)
7088 bytes
深入观测方法
#选择某一行某一列数据,一行一列
>iris[1,1]
[1] 5.1
#使用c()选择多行
> sepal.iris = iris[,c("Sepal.Length","Sepal.Width")]
> str(sepal.iris)
'data.frame': 150 obs. of 2 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#指定观测那几行的那几个
> FIVE.sepal.iris = iris[1:5,c("Sepal.Length","Sepal.Width")]
> str(FIVE.sepal.iris)
'data.frame': 5 obs. of 2 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6
#设置筛选条件,例如iris中species的仅包括setosa类型的数据,后面指定了列数
> setosa.data = iris[iris$Species=="setosa",1:5]
> str(setosa.data)
'data.frame': 50 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#使用subset函数来获取数据集的子集
> sepal.data = subset(iris,select = c("Sepal.Length","Sepal.Width"))
> str(sepal.data)
'data.frame': 150 obs. of 2 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#subset获取仅包含setosa的数据
> setosa.data = subset(iris,Species=="setosa")
> str(setosa.data)
'data.frame': 50 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#subset运用条件来筛选数据
> example.data = subset(iris,Petal.Length<=1.4 & Petal.Width>=0.2,select = Species )
> str(example.data)
'data.frame': 21 obs. of 1 variable:
$ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#具有相同行相同列的数据合并为一组,
> flower.type = data.frame(Species = "setosa",Flower = "iris")
> merge(flower.type,iris[1:3,],by = "Species")
Species Flower Sepal.Length Sepal.Width Petal.Length Petal.Width
1 setosa iris 5.1 3.5 1.4 0.2
2 setosa iris 4.9 3.0 1.4 0.2
3 setosa iris 4.7 3.2 1.3 0.2
#函数order可以返回指定列进行数据排序后的数据框,下面是花萼长度从大到小排序
> head(iris[order(iris$Sepal.Length,decreasing = TRUE),])
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
132 7.9 3.8 6.4 2.0 virginica
118 7.7 3.8 6.7 2.2 virginica
119 7.7 2.6 6.9 2.3 virginica
123 7.7 2.8 6.7 2.0 virginica
136 7.7 3.0 6.1 2.3 virginica
106 7.6 3.0 6.6 2.1 virginica
扩展
#函数sub与gsub支持使用正则表达示对字符串的处理,分别替换第一个字符与所有字符
> iris10 = iris
> sub("e","z",names(iris10))
[1] "Szpal.Length" "Szpal.Width" "Pztal.Length" "Pztal.Width" "Spzcies"
> gsub("e","z",names(iris10))
[1] "Szpal.Lzngth" "Szpal.Width" "Pztal.Lzngth" "Pztal.Width" "Spzcizs"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27