
R语言建立时间序列的两个函数
金融数据必须是时间序列,才可进行经济统计分析。建立时间序列,必须有日期作为数据框的一列。R语言建立时间序列的两个函数是ts()和as.xts()。
1.ts()
library(stats) #stats软件包是R语言环境启动的7个软件包
ts(gm,frequency=12,start=c(1975,1))
这个命令表示:
(1) frequency=12表明时间单位为年,而且在每一个时间单位中有12个均匀间隔的观察值。
因此gm是月数据,在金融数据中,常用的有月收益率数据。
(2) start=c(1975,1)表示开始时间为1975年1月。
(3) gm应是列数据,而不能是多列金融数据。而且gm在数据框中选择出来时,应有日期在同一个数据框中。
frequency和start是R中ts()函数产生时间序列对象需要的两个基本参数。frequency的用法,
(a)frequency=4表明时间单位是年,每一个时间单位中有4个季节观察值。
(b)frequency=365表明时间单位是年,每一个时间单位中有365个日期观察值。
若样本容量T<365,则可用frequency=T表示。
start的用法。
(a)若ts(gm,frequency=365,start=c(2014,1,1))建立时间序列。
但是,若用 ts(gm,frequency=365,start=c(2014,1,1),end(2014,12,31))结果将不同。
(b)若用ts(gm,frequency=1,start=c(2014,1,1))则,创建的时间序列start和end不同,将1年的时间单位用1天表示。
这个用法一般是gm只有一年的数据,对此年的数据进行以天为单位的经济统计。
然而金融数据大多数并不是以365个数据为一年的数据,比如股市一年的有效数据一般在240多天,因此frequence的选择应该与一年的实际数据为准。
完整的函数表示:
ts(data = NA, start = 1, end = numeric(0), frequency = 1, deltat = 1,
ts.eps = getOption("ts.eps"), class = , names = )
详细信息可见R语言系统
>?ts
e.g. 参数class
|
class to be given to the result, or none ifNULLor"none". The default is"ts"for a single series,c("mts", "ts", "matrix")for multiple series. |
2.as.xts()
as.xts()与ts()不同,要求行名是日期。因此数据框中的日期必须赋值到行名,
而且删除日期所在的列。
eg1. as.xts()建立时间序列的主要命令
da=read.table("m-gm3dxjsh2016.txt",header=T)
gm2016=da[,1:2] #da[1]是日期,da[2]是金融数据
rownames(gm2016)=gm2016[,1] #将日期赋值到行名,注意不能用gm2016[1],否则长度不同
gm=gm2016[-1] # 去掉第一列
gm1=as.xts(gm[,1]) # 建立金融数据的时间序列,实际上这个语句并能运行,原因见eg2.
将日期赋值到行名的编程方法有很多,第二个程序的数据文件不同。
eg2.as.xts()建立时间序列的完整程序
> da=read.table("D:/programsdata/financialCapital/m-gm3dx2016.txt",head=T)
>head(da)
date gm vw ew sp
1 19750131 0.252033 0.141600 0.299260 0.122812
2 19750228 0.028571 0.058411 0.053918 0.059886
3 19750331 0.054487 0.030191 0.081497 0.021694
4 19750430 0.045593 0.046497 0.031093 0.047265
5 19750530 0.037209 0.055140 0.072876 0.044101
6 19750630 0.107955 0.051473 0.071792 0.044323
>gm2016=da[,1:2] #gm2016是数据框
>head(gm2016)
date gm
1 19750131 0.252033
2 19750228 0.028571
3 19750331 0.054487
4 19750430 0.045593
5 19750530 0.037209
6 19750630 0.107955
> dim(gm2016)
[1] 408 2
> str(gm2016) #成员date是int型
'data.frame': 408 obs. of 2 variables:
$ date: int 19750131 19750228 19750331 19750430 19750530 19750630 19750731 19750829 19750930 19751031 ...
$ gm : num 0.252 0.0286 0.0545 0.0456 0.0372 ...
> d=as.character(gm2016[,1]) #将int型日期转换成Date型
> d1=as.Date(d,format="%Y%m%d")
> head(d1)
[1] "1975-01-31" "1975-02-28" "1975-03-31" "1975-04-30" "1975-05-30"
[6] "1975-06-30"
> class(d1)
[1] "Date"
> gm=gm2016[,2,drop=FALSE] #获得数据框gm2016的第二列,drop=FALSE防止出现向量
> class(gm) #gm是数据框
[1] "data.frame"
> head(gm)
gm
1 0.252033
2 0.028571
3 0.054487
4 0.045593
5 0.037209
6 0.107955
> str(gm) #成员gm的类型是num数值型
'data.frame': 408 obs. of 1 variable:
$ gm: num 0.252 0.0286 0.0545 0.0456 0.0372 ...
> rownames(gm)=d1 #gm的行名是R语言标准时间表示
> head(gm)
gm
1975-01-31 0.252033 #注意19750131是不允许的
1975-02-28 0.028571
1975-03-31 0.054487
1975-04-30 0.045593
1975-05-30 0.037209
1975-06-30 0.107955
>library(xts)
>gm2=as.xts(gm)
比较
ts()和as.xts()两个函数产生的时间序列的plot图略有不同。然而acf图和pacf图则相同。
nm1=as.xts(data1)
nm2=ts(data1,frequency=365,start=c(2014,1,1),end=c(2014,12,31))
acf(nm1,lag=20)
pacf(nm1,lag=20)
acf(nm2,lag=20)
pacf(nm2,lag=20)
plot(nm1)
plot(nm2)
图1 acf和pacf图
图2 两个函数产生的时间序列的plot图
可以看到plot图中,ts()产生的时间序列更为精细,而as.xts()的时间序列则略微粗糙。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26