
python字典多键值及重复键值的使用方法
下面小编就为大家带来一篇python字典多键值及重复键值的使用方法(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个才参考。
在Python中使用字典,格式如下:
dict={ key1:value1 , key2;value2 ...}
在实际访问字典值时的使用格式如下:
dict[key]
多键值
字典的多键值形式如下:
dict={(ke11,key12):value ,(key21,key22):value ...}
在实际访问字典里的值时的具体形式如下所示(以第一个键为例):
dict[key11,key12]
或者是:
dict[(key11,key12)]
以下是实际例子:
多值
在一个键值对应多个值时,格式:
dict={key1:(value1,value2 ..), key2:(value1,value2 ...) ...}
访问字典里的值的格式如下:
dict[key]
或者
dict[key][index]
循环赋值(重点)
语法结构如以下实例所示
总结:
通过以上的说明,可以知道在字典的定义中, 冒号( : ) 号前后是分别是一个整体,即使用小括号()将冒号前后部分分别包括起来,在访问字典值时,最好把键放在小括号内成为一个整体。
键值相同的多个键值对
即在字典中,有至少两个成员的键相同,但是键对应的值是不同的,格式如下:
dict={ key1: value1
key1: vaklue2,
... }
在这种形式形式中在后来赋给键的值将成为键的真实值。
使用列表、字典作为字典的值
格式
dict={ key1:(key11:value,key12:value) ,
key2:(key21:value,key22:value)
}
访问字典值得格式(以第一个键为例):
dict[key1][key11]
实际例子如下所示:
以上就是小编为大家带来的python字典多键值及重复键值的使用方法(详解)全部内容了,希望大家多多支持脚本之家~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29