
浅谈数据分析的误解
误解1:数据分析并不是IT,也不是报告。对这一点的误解,是我见到过的最常见的误解之一。
当谈到数据分析时,很多人仍然相信这应该是IT的事情,因为它与技术有关。数据分析的第一步是把数据转化为信息,在这里,技术只是工具,报告只是产出。我们需要技术来进行数据分析,但这并不意味着数据分析就应该由IT的人来驱动。与此类似,财务管理也需要软件来生成财务报告,但是它并没有被划归到IT,因为它涉及到财务审核和规划。此外,很多人仍然不清楚数据分析和报告的概念之间的区别。在我看来,如果报告中没有任何信息被翻译为可以影响商业产出的见解,那么这就不是数据分析,仅仅是报告而已。
误解2:第二个误解是关于见解(insight)的
见解是很重要的,很多公司抱怨说报告没有见解。首先,我认为不应该期望从报告中得到见解,因为报告仅仅是提供一些数字来告诉您发生了什么;同时,您仍然需要找出为什么以及需要做什么。
找出见解是一个探索和学习的过程。它必须由彻底理解业务的人来发起,问正确的问题,分析相关信息之间的联系,找出能引向可能行动的见解。找出见解的过程不能外包给对您的业务并不太懂的第三方。
数据分析也是一个人和数据之间交互和协作的过程;因此,技术在这里对改善业务工作效率而言扮演者重要的角色。报告仅仅提供静态的信息,但我们需要快速而动态地获取来自多个数据源的相关数据来回答突发的商业问题并找出见解。没有技术,从无数静态报告中获取见解将会占用大量时间,非常困难。
最后一个要点是关于制定聪明决策的过程。
很多公司都把处理数据分析的职责交给内部人员或外包给第三方的服务提供商。然而,这些内部人员或服务提供商并没有权威、影响力或权力去参与战略和决策制定。
结果,数据分析带来的增值并不能转化为能够带来想要的商业成果的行动。
结论
很显然,这些年来信息技术的迅速发展,影响了我们商业流程、战略制定和数据分析的方式。随着社交媒体 / Web2.0成为主流,以及开放数据运动,网络上可用数据的数量正在呈指数级增长,也为数据分析带来了很多新的挑战。
无论这些挑战如何,我们都应该始终关注数据分析的基本概念。正如我们总是在任何业务中考虑人员、流程和技术,数据分析中也应如此。我们应该理解技术只是工具——它让人们能够获取正确的数据和信息以找到相关的见解,而这些见解会在决策制定流程中被翻译为战略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11