京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据聚类的简单应用
数据聚类data clustering:用来寻找紧密相关的事物,并将其可视化的方法。
1. 聚类时常被用于数据量很大(data-intensive)的应用中。
2. 聚类是无监督学习(unsupervised learning)的一个例子。无监督学习算法并不利用带有正确答案的样本数据进行“训练”,它们的目的是要在一组数据中找寻某种结构,而这些数据本身并不是我们要找的答案。
3. 聚类的结果不会告诉零售商每位顾客可能会买什么,也不会预测新来的顾客适合哪种时尚,聚类算法的目标是采集数据,然后从中找出不同的数组。
例如:可以通过聚类来对博客用户进行分类
这个说法的假设前提是:我们有众多的博客用户,但这些用户并没有显著的特征标签,在这种情况下,如何有效的对这些用户进行分类。这时候聚类就派上用场了。
基本过程:
1. 构建一个博客订阅源列表
2. 利用订阅源列表建立一个单词列表,将其实际用于针对每个博客的单词计数。
3. 我们利用上述单词列表和博客列表来建立一个文本文件,其中包含一个大的矩阵,记录者针对每个博客的所有单词的统计情况。(例如:可以用列对应单词,用行对应博客),一个可用的代码如下:
[python] view plain copy
import feedparser
import re
# Returns title and dictionary of word counts for an RSS feed
def getwordcounts(url):
# Parse the feed
d=feedparser.parse(url)
wc={}
# Loop over all the entries
for e in d.entries:
if 'summary' in e: summary=e.summary
else: summary=e.description
# Extract a list of words
words=getwords(e.title+' '+summary)
for word in words:
wc.setdefault(word,0)
wc[word]+=1
return d.feed.title,wc
def getwords(html):
# Remove all the HTML tags
txt=re.compile(r'<[^>]+>').sub('',html)
# Split words by all non-alpha characters
words=re.compile(r'[^A-Z^a-z]+').split(txt)
# Convert to lowercase
return [word.lower() for word in words if word!='']
4. 当然这里有很多可以减少需要统计的单词量的技巧,有些常用的习惯性用于可以从这些列表中删除掉。具体的构建过程这里省略不谈,感兴趣的可以参考相关书籍。
5. 进行聚类:这里有两种可用的方法
分级聚类:
分级聚类通过连续不断地将最为相似的群组两两合并,直到只剩一个群组为止,来构造出一个群组的层级结构。其过程可以参考下图:

图:分级聚类的过程
分级聚类基本算法如下:(这里省略了一些细节函数,如加载文件,计算皮尔逊相似度等)
[python] view plain copy
def hcluster(rows,distance=pearson):
distances={}
currentclustid=-1
# Clusters are initially just the rows
clust=[bicluster(rows[i],id=i) for i in range(len(rows))]
while len(clust)>1:
lowestpair=(0,1)
closest=distance(clust[0].vec,clust[1].vec)
# loop through every pair looking for the smallest distance
for i in range(len(clust)):
for j in range(i+1,len(clust)):
# distances is the cache of distance calculations
if (clust[i].id,clust[j].id) not in distances:
distances[(clust[i].id,clust[j].id)]=distance(clust[i].vec,clust[j].vec)
d=distances[(clust[i].id,clust[j].id)]
if d<closest:
closest=d
lowestpair=(i,j)
# calculate the average of the two clusters
mergevec=[
(clust[lowestpair[0]].vec[i]+clust[lowestpair[1]].vec[i])/2.0
for i in range(len(clust[0].vec))]
# create the new cluster
newcluster=bicluster(mergevec,left=clust[lowestpair[0]],
right=clust[lowestpair[1]],
distance=closest,id=currentclustid)
# cluster ids that weren't in the original set are negative
currentclustid-=1
del clust[lowestpair[1]]
del clust[lowestpair[0]]
clust.append(newcluster)
return clust[0]
待分级聚类完成后,我们可以采用一种图形化的方式来展现所得的结果,这种图被称为树状图(dendrogram),如下图所示。例如:我们针对博客数据进行聚类,以构造博客的层级结构,如果构造成功,我们将实现按主题对博客进行分组。

树状图的绘制,可以使用一个Python包:Python Imaging Library(PIL)
借助PIL,我们可以非常轻松地生成带有文本和线条的图形。
[python] view plain copy
from PIL import Image,ImageDraw<span style="font-family:Arial, Helvetica, sans-serif;background-color:rgb(255,255,255);"> </span>
首先,必须利用一个函数来返回给定聚类的总体高度。
此外,还必须知道节点的总体误差。萧条的长度会根据每个节点的误差进行相应的调整,所以我们需要根据总的误差值生成一个缩放因子scaling factor.
对于绘制的图形,线条越长就越表明,合并在一起的两个聚类差别很大,线条越短,则表示两个聚类的相似度很高。
K-均值聚类:
分级聚类的结果为我们返回了一棵形象直观的树。但存在两个缺点:
1. 没有额外投入的情况下,树形视图是不会真正将数据拆分成不同组的
2. 算法的计算量非常大,大数据集情况下,速度很慢
K-均值聚类:
预先告诉速算法希望生成的聚类数量,然后算法会根据数据的结构状况来确定聚类的大小。
算法首先会随机确定K个中心位置,然后将各个数据项分配给最临近的中心点。待分配完成之后,聚类中心就会移到分配给该聚类的所有节点的平均位置处,然后整个分配过程重新开始。这一过程会一直重复下去,知道分配过程不再产生变化为止。
代码如下:
[python] view plain copy
import random
def kcluster(rows,distance=pearson,k=4):
# Determine the minimum and maximum values for each point
ranges=[(min([row[i] for row in rows]),max([row[i] for row in rows]))
for i in range(len(rows[0]))]
# Create k randomly placed centroids
clusters=[[random.random()*(ranges[i][1]-ranges[i][0])+ranges[i][0]
for i in range(len(rows[0]))] for j in range(k)]
lastmatches=None
for t in range(100):
print 'Iteration %d' % t
bestmatches=[[] for i in range(k)]
# Find which centroid is the closest for each row
for j in range(len(rows)):
row=rows[j]
bestmatch=0
for i in range(k):
d=distance(clusters[i],row)
if d<distance(clusters[bestmatch],row): bestmatch=i
bestmatches[bestmatch].append(j)
# If the results are the same as last time, this is complete
if bestmatches==lastmatches: break
lastmatches=bestmatches
# Move the centroids to the average of their members
for i in range(k):
avgs=[0.0]*len(rows[0])
if len(bestmatches[i])>0:
for rowid in bestmatches[i]:
for m in range(len(rows[rowid])):
avgs[m]+=rows[rowid][m]
for j in range(len(avgs)):
avgs[j]/=len(bestmatches[i])
clusters[i]=avgs
return bestmatches
其过程如下图所示:
图:K-均值聚类
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27