
数据聚类的简单应用
数据聚类data clustering:用来寻找紧密相关的事物,并将其可视化的方法。
1. 聚类时常被用于数据量很大(data-intensive)的应用中。
2. 聚类是无监督学习(unsupervised learning)的一个例子。无监督学习算法并不利用带有正确答案的样本数据进行“训练”,它们的目的是要在一组数据中找寻某种结构,而这些数据本身并不是我们要找的答案。
3. 聚类的结果不会告诉零售商每位顾客可能会买什么,也不会预测新来的顾客适合哪种时尚,聚类算法的目标是采集数据,然后从中找出不同的数组。
例如:可以通过聚类来对博客用户进行分类
这个说法的假设前提是:我们有众多的博客用户,但这些用户并没有显著的特征标签,在这种情况下,如何有效的对这些用户进行分类。这时候聚类就派上用场了。
基本过程:
1. 构建一个博客订阅源列表
2. 利用订阅源列表建立一个单词列表,将其实际用于针对每个博客的单词计数。
3. 我们利用上述单词列表和博客列表来建立一个文本文件,其中包含一个大的矩阵,记录者针对每个博客的所有单词的统计情况。(例如:可以用列对应单词,用行对应博客),一个可用的代码如下:
[python] view plain copy
import feedparser
import re
# Returns title and dictionary of word counts for an RSS feed
def getwordcounts(url):
# Parse the feed
d=feedparser.parse(url)
wc={}
# Loop over all the entries
for e in d.entries:
if 'summary' in e: summary=e.summary
else: summary=e.description
# Extract a list of words
words=getwords(e.title+' '+summary)
for word in words:
wc.setdefault(word,0)
wc[word]+=1
return d.feed.title,wc
def getwords(html):
# Remove all the HTML tags
txt=re.compile(r'<[^>]+>').sub('',html)
# Split words by all non-alpha characters
words=re.compile(r'[^A-Z^a-z]+').split(txt)
# Convert to lowercase
return [word.lower() for word in words if word!='']
4. 当然这里有很多可以减少需要统计的单词量的技巧,有些常用的习惯性用于可以从这些列表中删除掉。具体的构建过程这里省略不谈,感兴趣的可以参考相关书籍。
5. 进行聚类:这里有两种可用的方法
分级聚类:
分级聚类通过连续不断地将最为相似的群组两两合并,直到只剩一个群组为止,来构造出一个群组的层级结构。其过程可以参考下图:
图:分级聚类的过程
分级聚类基本算法如下:(这里省略了一些细节函数,如加载文件,计算皮尔逊相似度等)
[python] view plain copy
def hcluster(rows,distance=pearson):
distances={}
currentclustid=-1
# Clusters are initially just the rows
clust=[bicluster(rows[i],id=i) for i in range(len(rows))]
while len(clust)>1:
lowestpair=(0,1)
closest=distance(clust[0].vec,clust[1].vec)
# loop through every pair looking for the smallest distance
for i in range(len(clust)):
for j in range(i+1,len(clust)):
# distances is the cache of distance calculations
if (clust[i].id,clust[j].id) not in distances:
distances[(clust[i].id,clust[j].id)]=distance(clust[i].vec,clust[j].vec)
d=distances[(clust[i].id,clust[j].id)]
if d<closest:
closest=d
lowestpair=(i,j)
# calculate the average of the two clusters
mergevec=[
(clust[lowestpair[0]].vec[i]+clust[lowestpair[1]].vec[i])/2.0
for i in range(len(clust[0].vec))]
# create the new cluster
newcluster=bicluster(mergevec,left=clust[lowestpair[0]],
right=clust[lowestpair[1]],
distance=closest,id=currentclustid)
# cluster ids that weren't in the original set are negative
currentclustid-=1
del clust[lowestpair[1]]
del clust[lowestpair[0]]
clust.append(newcluster)
return clust[0]
待分级聚类完成后,我们可以采用一种图形化的方式来展现所得的结果,这种图被称为树状图(dendrogram),如下图所示。例如:我们针对博客数据进行聚类,以构造博客的层级结构,如果构造成功,我们将实现按主题对博客进行分组。
树状图的绘制,可以使用一个Python包:Python Imaging Library(PIL)
借助PIL,我们可以非常轻松地生成带有文本和线条的图形。
[python] view plain copy
from PIL import Image,ImageDraw<span style="font-family:Arial, Helvetica, sans-serif;background-color:rgb(255,255,255);"> </span>
首先,必须利用一个函数来返回给定聚类的总体高度。
此外,还必须知道节点的总体误差。萧条的长度会根据每个节点的误差进行相应的调整,所以我们需要根据总的误差值生成一个缩放因子scaling factor.
对于绘制的图形,线条越长就越表明,合并在一起的两个聚类差别很大,线条越短,则表示两个聚类的相似度很高。
K-均值聚类:
分级聚类的结果为我们返回了一棵形象直观的树。但存在两个缺点:
1. 没有额外投入的情况下,树形视图是不会真正将数据拆分成不同组的
2. 算法的计算量非常大,大数据集情况下,速度很慢
K-均值聚类:
预先告诉速算法希望生成的聚类数量,然后算法会根据数据的结构状况来确定聚类的大小。
算法首先会随机确定K个中心位置,然后将各个数据项分配给最临近的中心点。待分配完成之后,聚类中心就会移到分配给该聚类的所有节点的平均位置处,然后整个分配过程重新开始。这一过程会一直重复下去,知道分配过程不再产生变化为止。
代码如下:
[python] view plain copy
import random
def kcluster(rows,distance=pearson,k=4):
# Determine the minimum and maximum values for each point
ranges=[(min([row[i] for row in rows]),max([row[i] for row in rows]))
for i in range(len(rows[0]))]
# Create k randomly placed centroids
clusters=[[random.random()*(ranges[i][1]-ranges[i][0])+ranges[i][0]
for i in range(len(rows[0]))] for j in range(k)]
lastmatches=None
for t in range(100):
print 'Iteration %d' % t
bestmatches=[[] for i in range(k)]
# Find which centroid is the closest for each row
for j in range(len(rows)):
row=rows[j]
bestmatch=0
for i in range(k):
d=distance(clusters[i],row)
if d<distance(clusters[bestmatch],row): bestmatch=i
bestmatches[bestmatch].append(j)
# If the results are the same as last time, this is complete
if bestmatches==lastmatches: break
lastmatches=bestmatches
# Move the centroids to the average of their members
for i in range(k):
avgs=[0.0]*len(rows[0])
if len(bestmatches[i])>0:
for rowid in bestmatches[i]:
for m in range(len(rows[rowid])):
avgs[m]+=rows[rowid][m]
for j in range(len(avgs)):
avgs[j]/=len(bestmatches[i])
clusters[i]=avgs
return bestmatches
其过程如下图所示:
图:K-均值聚类
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27