
机器学习必知的15大框架
机器学习工程师是开发产品和构建算法团队中的一部分,并确保其可靠、快速和成规模地工作。他们和数据科学家密切合作来了解理论知识和行业应用。数据专家和机器学习工程师的主要区别是:
数据专家进行调查研究形成有关于机器学习项目的想法,然后分析来理解机器学习系统的度量影响。
下面是机器学习的框架介绍:
1.Apache Singa 是一个用于在大型数据集上训练深度学习的通用分布式深度学习平台,它是基于分层抽象的简单开发模型设计的。它还支持各种当前流行的深度学习模型,有前馈模型(卷积神经网络,CNN),能量模型(受限玻尔兹曼机,RBM和循环神经网络,RNN),还为用户提供了许多内嵌层。
2.Amazon Machine Learning(AML)是一种让各种级别使用机器学习技术的开发人员可轻松掌握的一个服务,提供了视觉工具和向导,可以指导您在不必学习复杂的机器学习算法和技术的情况下建立机器学习。
3.Azure ML Studio允许微软Azure的用户创建和训练模型,随后将这些模型转化为能被其他服务使用的API。尽管您可以将自己的Azure存储链接到更大模型的服务,但是每个账户模型数据的存储容量最多不超过10GB。在Azure中有大量的算法可供使用,这要感谢微软和一些第三方。甚至你都不需要注册账号,就可以匿名登录,使用Azure ML Studio服务长达8小时。
4.Caffe是由伯克利视觉学习中心(BLVC)和社区贡献者们基于BSD-2-协议开发的一个深度学习框架,它秉承“表示、效率和模块化”的开发理念。模型和组合优化通过配置而不是硬编码实现,并且用户可根据需要在CPU处理和GPU处理之间进行切换,Caffe的高效性使其在实验研究和产业部署中的表现很完美,使用单个NVIDIA K40 GPU处理器每天即可处理超过六千万张图像 。
5.H2O使人轻松地应用数学和预测分析来解决当今极具挑战性的商业问题,它巧妙的结合了目前在其他机器学习平台还未被使用的独有特点:最佳开源技术,易于使用的WebUI和熟悉的界面,支持常见的数据库和不同文件类型。用H2O,你可以使用现有的语言和工具。此外,也还可以无缝扩展到Hadoop环境中。
6.Massive Online Analysis (MOA)是目前最受欢迎的数据流挖掘开源框架,拥有一个非常活跃的社区。它包含一系列的机器学习算法(分类,回归,聚类,离群检测,概念漂移检测和推荐系统)和评价工具。和WEKA项目一样,MOA 也是用Java编写,但扩展性更好。
7.MLlib (Spark)是Apache Spark的机器学习库,目的是让机器学习实现可伸缩性和易操作性,它由常见的学习算法和实用程序组成,包括分类、回归、聚类,协同过滤、降维,同时包括底层优化原生语言和高层管道API。
8.Mlpack是一个基于C++的基础学习库 ,最早于2011年推出,据库的开发者声称,它秉承“可扩展性、高效性和易用性”的理念来设计的。执行Mlpack有两种方法:通过快速处理简易的“黑盒”操作命令行执行的缓存,或者借助C++ API处理较为复杂的工作。Mlpack可提供简单的能被整合到大型的机器学习解决方案中的命令行程序和C++的类。
9.Pattern是Python编程语言的web挖掘组件,有数据挖掘工具( Google、Twitter 、Wikipedia API,网络爬虫,HTML DOM解析器),自然语言处理(词性标注,n-gram搜索,情感分析,WordNet接口),机器学习(向量空间模型,聚类,支持向量机),网络分析和可视化。
10.Scikit-Learn为了数学和科学工作,基于现有的几个Python包(Numpy,SciPy和matplotlib)拓展了Python的使用范围。最终生成的库既可用于交互式工作台应用程序,也可嵌入到其他软件中进行复用。该工具包基于BSD协议,是完全免费开源的,可重复利用。Scikit-Learn中含有多种用于机器学习任务的工具,如聚类,分类,回归等。Scikit-Learn是由拥有众多开发者和机器学习专家的大型社区开发的,因此,Scikit-Learn中最前沿的技术往往会在很短时间内被开发出来。
11.Shogu是最早的机器学习库之一,它创建于1999年,用C++开发,但并不局限于C++环境。借助SWIG库,Shogun适用于各种语言环境,如Java,Python,c#,Ruby,R,Lua,Octave和Mablab。Shogun旨在面向广泛的特定类型和学习配置环境进行统一的大规模学习,如分类,回归或探索性数据分析。
12.TensorFlow是一个使用数据流图进行数值运算的开源软件库,它实现了数据流图,其中,张量(“tensors”)可由一系列图形描述的算法来处理,数据在该系统中的变化被称为“流”,由此而得名。数据流可用C++或Python编码后在CPU或GPU的设备上运行。
13.Theano是一个基于BSD协议发布的可定义、可优化和可数值计算的Phython库。使用Theano也可以达到与用C实现大数据处理的速度相媲美,是支持高效机器学习的算法。
14.Torch是一种广泛支持把GPU放在首位的机器学习算法的科学计算框架。由于使用了简单快速的脚本语言LuaJIT和底层的C/CUDA来实现,使得该框架易于使用且高效。Torch目标是让你通过极其简单的过程、最大的灵活性和速度建立自己的科学算法。Torch是基于Lua开发的,拥有一个庞大的生态社区驱动库包设计机器学习、计算机视觉、信号处理,并行处理,图像,视频,音频和网络等。
15.Veles是一套用C++开发的面向深层学习应用程序的分布式平台,不过它利用Python在节点间自动操作与协作任务。在相关数据集中到该集群之前,可对数据进行分析与自动标准化调整,且REST API允许将各已训练模型立即添加至生产环境当中,它侧重于性能和灵活性。Veles几乎没有硬编码,可对所有广泛认可的网络拓扑结构进行训练,如全卷积神经网络,卷积神经网络,循环神经网络等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27